An iterative technique for the computation of the steady state gains for the discrete optimal regulator

作者: G. Hewer

DOI: 10.1109/TAC.1971.1099755

关键词: Linear-quadratic-Gaussian controlLinear regulatorComputationInvariant (mathematics)Control theorySteady state (electronics)Numerical analysisDiscrete systemRegulatorMathematics

摘要: … The purpose of this correspondence is to establish the validity of an algorithm for the discrete-time invariant linear regulator with infinite terminal time, which is the analog of the algorithm derived by Kleinman [5] for the continuous problem. Although the usual derivat.ion of the optimal control law is recursive in nature, the rate of convergence to the steady state is generally not very rapid, especially in the neighborhood of the steady state, as simple one-dimensional examples demonstrate. In contrast, the algorithm presented here converges in a …

参考文章(6)
M.L.J. Hautus, Stabilization, controllability and observability of linear autonomous systems Indagationes Mathematicae (Proceedings). ,vol. 73, pp. 448- 455 ,(1970) , 10.1016/S1385-7258(70)80049-X
D. Kleinman, On an iterative technique for Riccati equation computations IEEE Transactions on Automatic Control. ,vol. 13, pp. 114- 115 ,(1968) , 10.1109/TAC.1968.1098829
Wolfgang Hahn, Uber die Anwendung der Methode von Ljapunov auf Differenzengleichungen Mathematische Annalen. ,vol. 136, pp. 430- 441 ,(1958) , 10.1007/BF01347793
W. M. Wonham, On a Matrix Riccati Equation of Stochastic Control Siam Journal on Control. ,vol. 6, pp. 681- 697 ,(1968) , 10.1137/0306044
W. Wonham, On pole assignment in multi-input controllable linear systems IEEE Transactions on Automatic Control. ,vol. 12, pp. 660- 665 ,(1967) , 10.1109/TAC.1967.1098739
R.E. Kalman, On the general theory of control systems IFAC Proceedings Volumes. ,vol. 1, pp. 491- 502 ,(1960) , 10.1016/S1474-6670(17)70094-8