Bayesian inversion of EEG models

作者: J. Mattout , C. Phillips , K. Friston , J. Daunizeau

DOI: 10.1016/B978-012372560-8/50029-2

关键词: Bayesian probabilityHyperparameterMaximum a posteriori estimationGenerative modelCovarianceComputer scienceExpectation–maximization algorithmRestricted maximum likelihoodAlgorithmBayes' theoremData mining

摘要: In this chapter, we consider a generative model for evoked neuronal responses as observed with electroencephalography (EEG) and magnetoencephalography (MEG). Because of its linear hierarchical nature, can be estimated efficiently using empirical Bayes. Importantly, multiple constraints on the source distribution incorporated in terms variance components that are from data. A dual estimation is obtained via an expectation maximization (EM) scheme to give restricted maximum likelihood (ReML) estimate prior covariance (in hyperparameters) posteriori (MAP) sources. The Bayesian formalism yields generic approach reconstruction under constraints, which extended cover spatio-temporal models induced next chapter.

参考文章(25)
R D Pascual-Marqui, Review of methods for solving the EEG inverse problem Int J Bioelectromagnetism. ,vol. 1, ,(1999)
Matti S Hämäläinen, RJ Ilmoniemi, None, Interpreting magnetic fields of the brain: minimum norm estimates Medical & Biological Engineering & Computing. ,vol. 32, pp. 35- 42 ,(1994) , 10.1007/BF02512476
A A Ioannides, J P R Bolton, C J S Clarke, Continuous probabilistic solutions to the biomagnetic inverse problem Inverse Problems. ,vol. 6, pp. 523- 542 ,(1990) , 10.1088/0266-5611/6/4/005
Christophe Phillips, Jeremie Mattout, Michael D. Rugg, Pierre Maquet, Karl J. Friston, An empirical Bayesian solution to the source reconstruction problem in EEG NeuroImage. ,vol. 24, pp. 997- 1011 ,(2005) , 10.1016/J.NEUROIMAGE.2004.10.030
J Sarvas, Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem Physics in Medicine and Biology. ,vol. 32, pp. 11- 22 ,(1987) , 10.1088/0031-9155/32/1/004
Uniqueness in the Inversion of Inaccurate Gross Earth Data Philosophical Transactions of the Royal Society A. ,vol. 266, pp. 123- 192 ,(1970) , 10.1098/RSTA.1970.0005
Rolando Grave de Peralta Menendez, Sara L. Gonzalez Andino, Backus and gilbert method for vector fields Human Brain Mapping. ,vol. 7, pp. 161- 165 ,(1999) , 10.1002/(SICI)1097-0193(1999)7:3<161::AID-HBM2>3.0.CO;2-#
M Scherg, J.S. Ebersole, Brain source imaging of focal and multifocal epileptiform EEG activity. Neurophysiologie Clinique-clinical Neurophysiology. ,vol. 24, pp. 51- 60 ,(1994) , 10.1016/S0987-7053(05)80405-8
Per Christian Hansen, Analysis of Discrete Ill-Posed Problems by Means of the L-Curve SIAM Review. ,vol. 34, pp. 561- 580 ,(1992) , 10.1137/1034115
Michael Scherg, Thomas Bast, Patrick Berg, Multiple Source Analysis of Interictal Spikes: Goals, Requirements, and Clinical Value Journal of Clinical Neurophysiology. ,vol. 16, pp. 214- 224 ,(1999) , 10.1097/00004691-199905000-00003