Computational methods for microRNA target prediction.

作者: Semih Ekimler , Kaniye Sahin

DOI: 10.3390/GENES5030671

关键词: Messenger RNARegulation of gene expressionUntranslated regionBiologyGene expressionGeneticsSingle-Stranded RNAmicroRNAComputational biologyGeneLin-4 microRNA precursor

摘要: MicroRNAs (miRNAs) have been identified as one of the most important molecules that regulate gene expression in various organisms. miRNAs are short, 21–23 nucleotide-long, single stranded RNA bind to 3' untranslated regions (3' UTRs) their target mRNAs. In general, they silence genes via degradation mRNA or by translational repression. The miRNAs, on other hand, also varies different tissues based functions. It is significantly predict targets computational approaches understand effects regulation expression. Various methods generated for miRNA prediction but resulting lists candidate from algorithms often do not overlap. crucial adjust bioinformatics tools more accurate predictions it equally validate predicted experimentally.

参考文章(163)
Zhixin Xie, Kristin D Kasschau, James C Carrington, Negative Feedback Regulation of Dicer-Like1 in Arabidopsis by microRNA-Guided mRNA Degradation Current Biology. ,vol. 13, pp. 784- 789 ,(2003) , 10.1016/S0960-9822(03)00281-1
Andrew Grimson, Kyle Kai-How Farh, Wendy K. Johnston, Philip Garrett-Engele, Lee P. Lim, David P. Bartel, MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Molecular Cell. ,vol. 27, pp. 91- 105 ,(2007) , 10.1016/J.MOLCEL.2007.06.017
Pål Sætrom, Bret S.E. Heale, Ola Snøve, Lars Aagaard, Jessica Alluin, John J. Rossi, Distance constraints between microRNA target sites dictate efficacy and cooperativity Nucleic Acids Research. ,vol. 35, pp. 2333- 2342 ,(2007) , 10.1093/NAR/GKM133
Matthias Selbach, Björn Schwanhäusser, Nadine Thierfelder, Zhuo Fang, Raya Khanin, Nikolaus Rajewsky, Widespread changes in protein synthesis induced by microRNAs Nature. ,vol. 455, pp. 58- 63 ,(2008) , 10.1038/NATURE07228
Robert F Place, Long-Cheng Li, Deepa Pookot, Emily J Noonan, Rajvir Dahiya, MicroRNA-373 induces expression of genes with complementary promoter sequences Proceedings of the National Academy of Sciences of the United States of America. ,vol. 105, pp. 1608- 1613 ,(2008) , 10.1073/PNAS.0707594105
Anastasia Khvorova, Angela Reynolds, Sumedha D. Jayasena, Functional siRNAs and miRNAs Exhibit Strand Bias Cell. ,vol. 115, pp. 209- 216 ,(2003) , 10.1016/S0092-8674(03)00801-8
Yuka Watanabe, Nozomu Yachie, Koji Numata, Rintaro Saito, Akio Kanai, Masaru Tomita, None, Computational analysis of microRNA targets in Caenorhabditis elegans Gene. ,vol. 365, pp. 2- 10 ,(2006) , 10.1016/J.GENE.2005.09.035
Sabbi Lall, Dominic Grün, Azra Krek, Kevin Chen, Yi-Lu Wang, Colin N Dewey, Pranidhi Sood, Teresa Colombo, Nicolas Bray, Philip MacMenamin, Huey-Ling Kao, Kristin C Gunsalus, Lior Pachter, Fabio Piano, Nikolaus Rajewsky, None, A Genome-Wide Map of Conserved MicroRNA Targets in C. elegans Current Biology. ,vol. 16, pp. 460- 471 ,(2006) , 10.1016/J.CUB.2006.01.050
Quan Zou, Yaozong Mao, Lingling Hu, Yunfeng Wu, Zhiliang Ji, miRClassify: An advanced web server for miRNA family classification and annotation Computers in Biology and Medicine. ,vol. 45, pp. 157- 160 ,(2014) , 10.1016/J.COMPBIOMED.2013.12.007