Exploring Spatiotemporal Phenological Patterns and Trajectories Using Self-Organizing Maps

作者: R. Zurita-Milla , J. A. E. van Gijsel , N. A. S. Hamm , P. W. M. Augustijn , A. Vrieling

DOI: 10.1109/TGRS.2012.2223218

关键词: VegetationProjection (set theory)National parkSelf-organizing mapRepresentation (mathematics)Series (mathematics)Remote sensingSatellite Image Time SeriesPixelNormalized Difference Vegetation IndexComputer scienceVegetation Index

摘要: Consistent satellite image time series are increasingly accessible to geoscientists, allowing an effective monitoring of environmental phenomena. Specifically, the use vegetation index has pushed forward large-scale phenology. Most these studies derive key phenological metrics from Normalized Difference Vegetation Index (NDVI) on a per-pixel basis. This paper demonstrates approach analyze synoptic spatiotemporal patterns over large areas, rather than per pixel. The selected involves data mining using self-organizing map (SOM) and Sammon's projection. To illustrate our approach, we trained SOM 13 years ten-day NDVI composites Systeme Pour l'Observation de la Terre-VEGETATION Kruger National Park, South Africa. resulted in topologically ordered set states. projection was then used create simplified representation that reflects similarities among Subsequently, depicted trajectories for each season show how development changes between years. provides holistic characterization main regional dynamics effectively summarizes information present series, thus facilitating further interpretation.

参考文章(39)
Rie Honda, Shuai Wang, Tokio Kikuchi, Osamu Konishi, Mining of Moving Objects from Time-Series Images and its Application to Satellite Weather Imagery intelligent information systems. ,vol. 19, pp. 79- 93 ,(2002) , 10.1023/A:1015516504614
Ron Wehrens, Lutgarde M. C. Buydens, Self- and Super-organizing Maps in R: The kohonen Package Journal of Statistical Software. ,vol. 21, pp. 1- 19 ,(2007) , 10.18637/JSS.V021.I05
BRENT N. HOLBEN, Characteristics of maximum-value composite images from temporal AVHRR data International Journal of Remote Sensing. ,vol. 7, pp. 1417- 1434 ,(1986) , 10.1080/01431168608948945
Scott C. Sheridan, Cameron C. Lee, The self-organizing map in synoptic climatological research: Progress in Physical Geography. ,vol. 35, pp. 109- 119 ,(2011) , 10.1177/0309133310397582
Isabel Poças, Mário Cunha, Luis S. Pereira, Dynamics of mountain semi-natural grassland meadows inferred from SPOT-VEGETATION and field spectroradiometer data International Journal of Remote Sensing. ,vol. 33, pp. 4334- 4355 ,(2012) , 10.1080/01431161.2011.645084
Amir Houshang Ehsani, Friedrich Quiel, Application of Self Organizing Map and SRTM data to characterize yardangs in the Lut desert, Iran Remote Sensing of Environment. ,vol. 112, pp. 3284- 3294 ,(2008) , 10.1016/J.RSE.2008.04.007
Sergio M. Vicente-Serrano, Fernando Pérez-Cabello, Teodoro Lasanta, Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images International Journal of Wildland Fire. ,vol. 20, pp. 195- 208 ,(2011) , 10.1071/WF08203
BC Hewitson, RG Crane, Self-organizing maps: applications to synoptic climatology Climate Research. ,vol. 22, pp. 13- 26 ,(2002) , 10.3354/CR022013