Symmetric Functions and the Fock Space

作者: Bernard Leclerc

DOI: 10.1007/978-94-010-0524-1_4

关键词: Macdonald polynomialsMathematicsConnection (mathematics)Quantum affine algebraAlgebraFock spaceStandard basisKazhdan–Lusztig polynomialRepresentation (mathematics)Pure mathematicsSymmetric function

摘要: We review the definition, calculation and properties of canonical bases Fock space representation . emphasize close connection with theory symmetric functions (plethysm, Hall-Littlewood functions, Macdonald polynomials)

参考文章(41)
V. G. Drinfeld, Hopf algebra and Yang-Baxter equation Soviet Math. Dokl.. ,vol. 32, pp. 254- 258 ,(1985)
Kouichi Takemura, Denis Uglov, Representations of the Quantum Toroidal Algebra on Highest Weight Modules of the Quantum Affine Algebra of Type \mathfrak{gl} N Publications of The Research Institute for Mathematical Sciences. ,vol. 35, pp. 407- 450 ,(1999) , 10.2977/PRIMS/1195143609
Gordon James, Adalbert Kerber, The representation theory of the symmetric group Cambridge University Press. ,(1984) , 10.1017/CBO9781107340732
Susumu Ariki, On the decomposition numbers of the Hecke algebra of $G(m, 1, n)$ Journal of Mathematics of Kyoto University. ,vol. 36, pp. 789- 808 ,(1996) , 10.1215/KJM/1250518452
George Lusztig, Introduction to Quantum Groups ,(1993)
Christophe Carré, Bernard Leclerc, Splitting the Square of a Schur Function into its Symmetric and Antisymmetric Parts Journal of Algebraic Combinatorics. ,vol. 4, pp. 201- 231 ,(1995) , 10.1023/A:1022475927626
V. G. DRINFEL'D, Hopf algebras and the quantum Yang-Baxter equation Proceedings of the USSR Academy of Sciences. ,vol. 32, pp. 254- 258 ,(1985) , 10.1142/9789812798336_0013
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234