Real-Time Dengue Forecasting In Thailand: A Comparison Of Penalized Regression Approaches Using Internet Search Data

作者: Caroline Kusiak

DOI: 10.7275/12681214

关键词: Lasso (statistics)Machine learningPenalized regressionThe InternetArtificial intelligenceDengue feverComputer science

摘要:

参考文章(15)
Samantha Cook, Corrie Conrad, Ashley L. Fowlkes, Matthew H. Mohebbi, Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic PLoS ONE. ,vol. 6, pp. e23610- ,(2011) , 10.1371/JOURNAL.PONE.0023610
Hui Zou, The adaptive lasso and its oracle properties Journal of the American Statistical Association. ,vol. 101, pp. 1418- 1429 ,(2006) , 10.1198/016214506000000735
D. Lazer, R. Kennedy, G. King, A. Vespignani, The Parable of Google Flu: Traps in Big Data Analysis Science. ,vol. 343, pp. 1203- 1205 ,(2014) , 10.1126/SCIENCE.1248506
Jerome Friedman, Trevor Hastie, Robert Tibshirani, Regularization Paths for Generalized Linear Models via Coordinate Descent Journal of Statistical Software. ,vol. 33, pp. 1- 22 ,(2010) , 10.18637/JSS.V033.I01
O. CHAREONSOOK, H. M. FOY, A. TEERARATKUL, N. SILARUG, Changing epidemiology of dengue hemorrhagic fever in Thailand. Epidemiology and Infection. ,vol. 122, pp. 161- 166 ,(1999) , 10.1017/S0950268898001617
Jeremy Ginsberg, Matthew H. Mohebbi, Rajan S. Patel, Lynnette Brammer, Mark S. Smolinski, Larry Brilliant, Detecting influenza epidemics using search engine query data Nature. ,vol. 457, pp. 1012- 1014 ,(2009) , 10.1038/NATURE07634
Shihao Yang, Mauricio Santillana, S. C. Kou, Accurate estimation of influenza epidemics using Google search data via ARGO Proceedings of the National Academy of Sciences of the United States of America. ,vol. 112, pp. 14473- 14478 ,(2015) , 10.1073/PNAS.1515373112
Duane J. Gubler, Dengue and Dengue Hemorrhagic Fever Clinical Microbiology Reviews. ,vol. 11, pp. 480- 496 ,(1998) , 10.1128/CMR.11.3.480
Robert Tibshirani, Regression Shrinkage and Selection Via the Lasso Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 58, pp. 267- 288 ,(1996) , 10.1111/J.2517-6161.1996.TB02080.X