作者: Marisa Cristina March , Roberto Trotta , Pietro Berkes , Glenn Starkman , Pascal Vaudrevange
DOI: 10.1007/978-1-4614-3508-2_10
关键词: Physics 、 Cosmic microwave background 、 Population 、 Supernova 、 Absolute magnitude 、 Astrophysics 、 Flatness (cosmology) 、 Type (model theory) 、 Posterior probability 、 Bayesian hierarchical modeling
摘要: We present a Bayesian hierarchical model for inferring the cosmological parameters from supernovae type Ia fitted with SALT-II lightcurve fitter. demonstrate simulated data sets that our method delivers tighter statistical constraints on over 90% of time, it reduces bias typically by factor ~2–3 and has better coverage properties than usual χ 2 approach. As further benefit, full posterior probability distribution dispersion intrinsic magnitude SNe is obtained. apply this to recent SNIa data, combining them CMB BAO we obtain Ωm = 0:28 ± 0:02, ΩΛ 0:73 0:01 (assuming ω −1) Ω m 0:01, −0:90 0:05 flatness; uncertainties only). constrain B-band population, obtaining \(\sigma _\mu ^{\text{int}} \) 0:13 [mag].