Algorithmic Aspects of Tree Width

作者: B. A. Reed

DOI: 10.1007/0-387-22444-0_4

关键词: Theoretical computer scienceCombinatorial theoryChordal graphAlgorithmic graph theoryTreewidthComputer scienceDisjoint pathTree decompositionDivide and conquer algorithmsPlanar graph

摘要: Divide and conquer is a technique which effective when preparing military campaigns, planning political strategy, manipulating your parents. So, it not too surprising that also has an important role to play in algorithmic graph theory.

参考文章(40)
Robin Thomas, Neil Robertson, Paul D. Seymour, A survey of linkless embeddings. Graph Structure Theory. pp. 125- 136 ,(1991)
Carsten Thomassen, Bojan Mohar, Graphs on Surfaces ,(2001)
Karl Menger, Zur allgemeinen Kurventheorie Fundamenta Mathematicae. ,vol. 10, pp. 96- 115 ,(1927) , 10.4064/FM-10-1-96-115
Fan R K Chung, Spectral Graph Theory ,(1996)
Michael R. Fellows, Michael A. Langston, Nonconstructive tools for proving polynomial-time decidability Journal of the ACM. ,vol. 35, pp. 727- 739 ,(1988) , 10.1145/44483.44491
Mikkel Thorup, All structured programs have small tree width and good register allocation Information & Computation. ,vol. 142, pp. 159- 181 ,(1998) , 10.1006/INCO.1997.2697
S.H. Whitesides, An algorithm for finding clique cut-sets Information Processing Letters. ,vol. 12, pp. 31- 32 ,(1981) , 10.1016/0020-0190(81)90072-7
Stefan Arnborg, Andrzej Proskurowski, Linear time algorithms for NP-hard problems restricted to partial k -trees Discrete Applied Mathematics. ,vol. 23, pp. 11- 24 ,(1989) , 10.1016/0166-218X(89)90031-0