Bilinear forms and dark-soliton solutions for a fifth-order variable-coefficient nonlinear Schrödinger equation in an optical fiber

作者: Chen Zhao , Yi-Tian Gao , Zhong-Zhou Lan , Jin-Wei Yang , Chuan-Qi Su

DOI: 10.1142/S0217984916503127

关键词: Phase (waves)AttosecondPhysicsOptical fiberNonlinear Schrödinger equationTrigonometric functionsQuantum mechanicsAmplitudeBilinear formSoliton

摘要: In this paper, a fifth-order variable-coefficient nonlinear Schrodinger equation is investigated, which describes the propagation of attosecond pulses in an optical fiber. Via Hirota’s method and auxiliary functions, bilinear forms dark one-, two- three-soliton solutions are obtained. Propagation interaction solitons discussed graphically: We observe that solitonic velocities only related to β1(x), β2(x), β3(x) β4(x), coefficients second-, third-, fourth- terms, respectively, with x being scaled distance, while amplitudes β3(x), β4(x) as well wave number. When constants, or linear, quadratic trigonometric functions x, we obtain parabolic, cubic periodic solitons, respectively. Interactions between (among) two (three) depicted, can be regarded elastic because remain unchanged except for some phase shifts after each

参考文章(18)
R. Hirota, Direct Methods in Soliton Theory Solitons. Series: Topics in Current Physics. ,vol. 17, pp. 157- 176 ,(1980) , 10.1007/978-3-642-81448-8_5
H. H. Chen, Y. C. Lee, Internal-Wave Solitons of Fluids with Finite Depth Physical Review Letters. ,vol. 43, pp. 264- 266 ,(1979) , 10.1103/PHYSREVLETT.43.264
A. Chowdury, D. J. Kedziora, A. Ankiewicz, N. Akhmediev, Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Physical Review E. ,vol. 90, pp. 032922- ,(2014) , 10.1103/PHYSREVE.90.032922
Ryogo Hirota, Yasuhiro Ohta, Hierarchies of Coupled Soliton Equations. I Journal of the Physical Society of Japan. ,vol. 60, pp. 798- 809 ,(1991) , 10.1143/JPSJ.60.798
M.J. Potasek, M. Tabor, Exact solutions for an extended nonlinear Schrödinger equation Physics Letters A. ,vol. 154, pp. 449- 452 ,(1991) , 10.1016/0375-9601(91)90971-A