Microstructural investigations in cordierite-mullite refractories

作者: M. Romagnoli , A.R. Boccaccini , D.N. Boccaccini , C. Leonelli , M.R. Rivasi

DOI: 10.1016/J.CERAMINT.2004.06.005

关键词: Fracture toughnessMulliteMicrostructurePhase (matter)Residual stressMaterials scienceScanning electron microscopeMineralogyFracture mechanicsComposite materialThermal shock

摘要: Abstract The influence of the mineralogical composition and phase distribution on crack initiation propagation in cordierite–mullite refractory plates used as substrates fast firing porcelain whiteware is investigated. Two different compositions (termed REFO CONC), characterised by silica to alumina ratios, were studied. Propagation cracks introduced Vickers’ indentations was observed scanning electron microscopy. Chemical analysis EDS for identification together with X-ray diffraction analysis. Microstructural features behaviour correlated draw conclusions two under thermal shock. It found that presence α-quartz crystals favourable residual stress field are responsible room temperature fracture toughness samples. CONC material contains a larger amount glassy than material, which should lead better high-temperature mechanical properties higher shock resistance, glass may close (“heal”) propagating cracks.

参考文章(15)
A. R. Beccaccini, D. N. Boccaccini, C. Leonelli, M. Romagnoli, P. Veronesi, I. Dlouhy, Microstructural investigation and thermal shock behaviour of mullite-cordierite refractory materials Convegno IGF XVII Bologna 2004. ,(2008)
VLADIMIR D. KRSTIC, Fracture of Brittle Solids in the Presence of Thermoelastic Stresses Journal of the American Ceramic Society. ,vol. 67, pp. 589- 593 ,(1984) , 10.1111/J.1151-2916.1984.TB19599.X
Minoru Taya, S. Hayashi, Albert S. Kobayashi, H. S. Yoon, Toughening of a Particulate‐Reinforced Ceramic‐Matrix Composite by Thermal Residual Stress Journal of the American Ceramic Society. ,vol. 73, pp. 1382- 1391 ,(1990) , 10.1111/J.1151-2916.1990.TB05209.X
W. J. Frey, J. D. Mackenzie, Mechanical properties of selected glasscrystal composites Journal of Materials Science. ,vol. 2, pp. 124- 130 ,(1967) , 10.1007/BF00549571
ROBERT F. COOK, BRIAN R. LAWN, CAROLYN J. FAIRBANKS, Microstructure-strength properties in ceramics. I: Effect of crack size on toughness Journal of the American Ceramic Society. ,vol. 68, pp. 604- 615 ,(1985) , 10.1111/J.1151-2916.1985.TB16163.X
A. G. Evans, The role of inclusions in the fracture of ceramic materials Journal of Materials Science. ,vol. 9, pp. 1145- 1152 ,(1974) , 10.1007/BF00552831
RAYMOND L. BERTOLOTTI, RICHARD M. FULRATH, Effect of Micromechanical Stress Cocentrations on Strength of Porous Glass Journal of the American Ceramic Society. ,vol. 50, pp. 558- 562 ,(1967) , 10.1111/J.1151-2916.1967.TB14998.X
R. MORENA, K. NIIHARA, D.P.H. HASELMAN, Effect of Crystallites on Surface Damage and Fracture Behavior of a Glass‐Ceramic Journal of the American Ceramic Society. ,vol. 66, pp. 673- 682 ,(1983) , 10.1111/J.1151-2916.1983.TB10528.X
W. D. Kingery, D. R. Uhlmann, H. K. Bowen, R. Frieser, Introduction to Ceramics ,(1976)
Ekkehard H. Lutz, Predictability of the Mechanical Properties of Inclusion‐Containing Ceramics Journal of the American Ceramic Society. ,vol. 77, pp. 1901- 1908 ,(1994) , 10.1111/J.1151-2916.1994.TB07069.X