Detection of ethanol content in ethanol diesel based on PLS and multispectral method

作者: Hongkun Chen , Yujia Zhang , Hanbing Qi , Dong Li

DOI: 10.1016/J.IJLEO.2019.05.067

关键词: Materials scienceNear-infrared spectroscopyAnalytical chemistryUltravioletRegression analysisNormalization (statistics)SpectroscopyDiesel fuelEthanolUltraviolet visible spectroscopy

摘要: Abstract Ultraviolet spectroscopy (UV) and near-infrared (NIR) combined with Partial Least Square (PLS) was used as a destructive technique to detect the ethanol content in diesel mixture. The spectral data were obtained by ultraviolet (TU-1901/1900) near infrared (IRTracer-100). Savitaky-Golay (S-G) method Max-min normalization pretreat normalize data, respectively. Then regression models established pretreated of UV, NIR UV-NIR PLS, evaluation parameters including rc, rp, RMSECV RMSEP compare results three models. show that fusion spectrum are rp=1, RMSECP=0.00156, rc=0.8431 RMSEV=0.0148, Compared UV spectrum, RMSECP is reduced 0.00169 0.01224, rc increased 0.0902 0.1813, These indicated model has more accuracy than single PLS can content.

参考文章(28)
Julie Culbert, Daniel Cozzolino, Renata Ristic, Kerry Wilkinson, Classification of Sparkling Wine Style and Quality by MIR Spectroscopy Molecules. ,vol. 20, pp. 8341- 8356 ,(2015) , 10.3390/MOLECULES20058341
E Koushki, A Farzaneh, MH Majles Ara, None, Modeling absorption spectrum and saturation intensity of ZnO nano-colloid Optik. ,vol. 125, pp. 220- 223 ,(2014) , 10.1016/J.IJLEO.2013.06.007
L. Nørgaard, A. Saudland, J. Wagner, J. P. Nielsen, L. Munck, S. B. Engelsen, Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy Applied Spectroscopy. ,vol. 54, pp. 413- 419 ,(2000) , 10.1366/0003702001949500
Ajit S. Bhown, Thomas W. Cornelius, John E. Mole, J.Daniel Lynn, William A. Tidwell, J.Claude Bennett, A simple modification on the vacuum system of the Beckman automated sequencer to improve the efficiency of Edman degradation. Analytical Biochemistry. ,vol. 102, pp. 35- 38 ,(1980) , 10.1016/0003-2697(80)90313-9
Ana Maria Simoes Costa, Maria Madalena Costa Sobral, Ivonne Delgadillo, António Cerdeira, Alisa Rudnitskaya, None, Astringency quantification in wine: comparison of the electronic tongue and FT-MIR spectroscopy Sensors and Actuators B-chemical. ,vol. 207, pp. 1095- 1103 ,(2015) , 10.1016/J.SNB.2014.10.052
Jia-Dong Chang, Hong Zheng, Nitin Mantri, Ling Xu, Zhengdong Jiang, Jialei Zhang, Zhipeng Song, Hongfei Lu, Chemometrics coupled with ultraviolet spectroscopy: a tool for the analysis of variety, adulteration, quality and ageing of apple juices International Journal of Food Science and Technology. ,vol. 51, pp. 2474- 2484 ,(2016) , 10.1111/IJFS.13229
Gajalakshmi K., Palanivel S., Nalini N.J., Saravanan S., Raghukandan K., Grain size measurement in optical microstructure using support vector regression Optik. ,vol. 138, pp. 320- 327 ,(2017) , 10.1016/J.IJLEO.2017.03.052
Anik Kumar Samanta, Arunava Naha, Aurobinda Routray, Alok Kanti Deb, Fast and accurate spectral estimation for online detection of partial broken bar in induction motors Mechanical Systems and Signal Processing. ,vol. 98, pp. 63- 77 ,(2018) , 10.1016/J.YMSSP.2017.04.035
DH Qi, K Yang, D Zhang, B Chen, Q Wei, CH Zhang, None, Experimental investigation of a turbocharged CRDI diesel engine fueled with Tung oil-diesel-ethanol microemulsion fuel Renewable Energy. ,vol. 113, pp. 1201- 1207 ,(2017) , 10.1016/J.RENENE.2017.06.105
Nicola Caporaso, Martin B. Whitworth, Stephen Grebby, Ian D. Fisk, Rapid prediction of single green coffee bean moisture and lipid content by hyperspectral imaging Journal of Food Engineering. ,vol. 227, pp. 18- 29 ,(2018) , 10.1016/J.JFOODENG.2018.01.009