INFORMATION THEORETIC LEARNING: RENYI'S ENTROPY AND ITS APPLICATIONS TO ADAPTIVE SYSTEM TRAINING

作者: Deniz Erdogmus

DOI:

关键词: Adaptive systemMathematicsEntropy (information theory)Theoretical computer science

摘要:

参考文章(125)
Jose C. Principe, Dongxin Xu, Energy, entropy and information potential for neural computation University of Florida. ,(1998)
Jose C. Principe, John W. Fisher, Nonlinear extensions to the minimum average correlation energy filter University of Florida. ,(1997)
Jose C. Principe, Hsiao-Chun Wu, Blind source separation using information measures in the time and frequency domains University of Florida. ,(1999)
J. C. Príncipe, W. Curt Lefebvre, Neil R. Euliano, Neural and adaptive systems : fundamentals through simulations Wiley. ,(2000)
Deniz Erdogmus, José Carlos Príncipe, Insights on the relationship between probability of misclassification and information transfer through classifiers. The International Journal of Computers, Systems and Signal. ,vol. 3, pp. 40- 54 ,(2002)
S Haykin, Adaptive Filter Theory ,(1986)
David Donoho, ON MINIMUM ENTROPY DECONVOLUTION Applied Time Series Analysis II#R##N#Proceedings of the Second Applied Time Series Symposium Held in Tulsa, Oklahoma, March 3–5, 1980. pp. 565- 608 ,(1981) , 10.1016/B978-0-12-256420-8.50024-1
Seungjin Choi, Andrzej Cichocki, Shun-Ichi Amari, Flexible Independent Component Analysis signal processing systems. ,vol. 26, pp. 25- 38 ,(2000) , 10.1023/A:1008135131269