A Duality Theorem for Reidemeister Torsion

作者: John Milnor

DOI: 10.2307/1970268

关键词: Lens spaceCombinatoricsHomomorphismAlgebraFinitely-generated abelian groupMathematicsAutomorphismTorsion (algebra)Group ringQuotient space (linear algebra)Fixed point

摘要: [a, pf] = f]P, where f ] denotes the value of function at a. If A is free and finitely generated, then clearly A* * can be identified with A. Note that any homomorphism h: A, -* A2 gives rise to a dual h*: -+ A*. As an example consider following geometrical situation. Let M simplical complex whose underlying space oriented n-manifold without boundary. 11 group fixed point simplicial automorphisms M. Then chain Cq(M; Z) considered as left module over integral ring Z[LI]. Now suppose has cell subdivision M'. Cn-q(M'; also Z[fl]-module. We will assume quotient MIR compact, so these modules are generated. There canonical anti-automorphism p Z[lI] which takes each element w into s'l.

参考文章(7)
John Milnor, Two Complexes Which are Homeomorphic But Combinatorially Distinct The Annals of Mathematics. ,vol. 74, pp. 575- ,(1961) , 10.2307/1970299
H. Seifert, Über das Geschlecht von Knoten Mathematische Annalen. ,vol. 110, pp. 571- 592 ,(1935) , 10.1007/BF01448044
Georges De Rham, Complexes à automorphismes et homéomorphie différentiable Annales de l’institut Fourier. ,vol. 2, pp. 51- 67 ,(1950) , 10.5802/AIF.19
Guillermo Torres, On the Alexander Polynomial The Annals of Mathematics. ,vol. 57, pp. 57- ,(1953) , 10.2307/1969726
Richard C. Blanchfield, Intersection Theory of Manifolds With Operators with Applications to Knot Theory The Annals of Mathematics. ,vol. 65, pp. 340- ,(1957) , 10.2307/1969966
G. Torres, R. H. Fox, Dual Presentations of the Group of a Knot The Annals of Mathematics. ,vol. 59, pp. 211- ,(1954) , 10.2307/1969687
Wolfgang Franz, Über die Torsion einer Überdeckung. Crelle's Journal. ,vol. 173, pp. 245- 254 ,(1935)