Low-dimensional lattices. II. Subgroups of GL(n, ℤ)

作者:

DOI: 10.1098/RSPA.1988.0095

关键词: CombinatoricsAutomorphismHomogeneous spaceMathematics

摘要: The maximal finite irreducible groups of n x integers for = 4, 5, . , 9, 11, 13, 17, 19, 23 were determined by Dade, Ryskov, Bulow, Plesken & Pohst and Plesken, as the automorphism certain quadratic forms. This paper presents a geometric description corresponding -dimensional lattices, gives coordinates which display their symmetries minimal vectors. Some very interesting lattices appear.

参考文章(29)
WALTER FEIT, ON FINITE LINEAR GROUPS IN DIMENSION AT MOST 10 Proceedings of the Conference on Finite Groups. pp. 397- 407 ,(1976) , 10.1016/B978-0-12-633650-4.50030-8
H. Brown, J. Neub�ser, H. Zassenhaus, On integral groups Numerische Mathematik. ,vol. 19, pp. 386- 399 ,(1972) , 10.1007/BF01404921
P. DELSARTE, J.M. GOETHALS, J.J. SEIDEL, BOUNDS FOR SYSTEMS OF LINES, AND JACOBI POLYNOMIALS Geometry and Combinatorics. ,vol. 30, pp. 193- 207 ,(1975) , 10.1016/B978-0-12-189420-7.50020-7
E. C. Dade, The maximal finite groups of $4 \times 4$ integral matrices Illinois Journal of Mathematics. ,vol. 9, pp. 99- 122 ,(1965) , 10.1215/IJM/1256067584
J. H. Conway, N. J. A. Sloane, Complex and integral laminated lattices Transactions of the American Mathematical Society. ,vol. 280, pp. 463- 490 ,(1983) , 10.1090/S0002-9947-1983-0716832-0
W. Plesken, W. Hanrath, The lattices of six-dimensional Euclidean space Mathematics of Computation. ,vol. 43, pp. 573- 587 ,(1984) , 10.1090/S0025-5718-1984-0758205-5
Low-dimensional lattices. III: Perfect forms Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 418, pp. 43- 80 ,(1988) , 10.1098/RSPA.1988.0073
Wilhelm Plesken, Michael Pohst, On maximal finite irreducible subgroups of (,). IV. Remarks on even dimensions with applications to =8 Mathematics of Computation. ,vol. 34, pp. 259- 275 ,(1980) , 10.1090/S0025-5718-1980-0551304-9
P. M. Gudivok, Yu. V. Kapitonova, V. P. Rud'ko, Finite irreducible subgroups of the group GL(n, Z ) Cybernetics and Systems Analysis. ,vol. 22, pp. 535- 553 ,(1987) , 10.1007/BF01068349