Asymptotic analysis for stochastic volatility: Edgeworth expansion

作者: Masaaki Fukasawa

DOI:

关键词: Ergodic theoryBounded functionApplied mathematicsSingular perturbationMathematicsEdgeworth seriesStochastic volatilityStochastic gameAsymptotic analysisAsymptotic expansion

摘要: The validity of an approximation formula for European option prices under a general stochastic volatility model is proved in the light Edgeworth expansion ergodic diffusions. asymptotic around Black-Scholes price and uniform bounded payoff func- tions. result provides validation existing singular perturbation fast mean reverting model.

参考文章(11)
Rabi N. Bhattacharya, R. Ranga Rao, Normal Approximation and Asymptotic Expansions ,(1976)
J. P. Fouque, G. Papanicolaou, R. Sircar, K. Solna, Singular Perturbations in Option Pricing Siam Journal on Applied Mathematics. ,vol. 63, pp. 1648- 1665 ,(2003) , 10.1137/S0036139902401550
Rafail Z. Khasminskii, G. Yin, Uniform Asymptotic Expansions for Pricing European Options Applied Mathematics and Optimization. ,vol. 52, pp. 279- 296 ,(2005) , 10.1007/S00245-005-0833-2
Valentin V. Petrov, Sums of Independent Random Variables ,(1975)
Nakahiro Yoshida, Malliavin calculus and asymptotic expansion for martingales Probability Theory and Related Fields. ,vol. 109, pp. 301- 342 ,(1997) , 10.1007/S004400050134
Masaaki Fukasawa, Asymptotic analysis for stochastic volatility: martingale expansion Finance and Stochastics. ,vol. 15, pp. 635- 654 ,(2011) , 10.1007/S00780-010-0136-6