New variable separation solutions to the (2 + 1)-dimensional Burgers equation

作者: Lijuan Yang , Xianyun Du , Qiongfen Yang

DOI: 10.1016/J.AMC.2014.12.119

关键词: Separation (statistics)Burgers' equationCharacteristic equationStructure (category theory)Variable (mathematics)SolitonOne-dimensional spaceRiccati equationMathematicsMathematical analysis

摘要: In this paper, by using the simplest equation-Riccati equation and variable separation method, new exact solutions of (2 + 1)-dimensional Burgers are obtained. Based on arbitrary function in solutions, we also get various forms some local soliton structure discussed.

参考文章(16)
Nikolai A. Kudryashov, Simplest equation method to look for exact solutions of nonlinear differential equations Chaos Solitons & Fractals. ,vol. 24, pp. 1217- 1231 ,(2005) , 10.1016/J.CHAOS.2004.09.109
X.Y. Tang, Z.F. Liang, Variable separation solutions for the (3 + 1)-dimensional Jimbo-Miwa equation Physics Letters A. ,vol. 351, pp. 398- 402 ,(2006) , 10.1016/J.PHYSLETA.2005.11.035
Bao-Dong Wang, Li-Na Song, Hong-Qing Zhang, A new extended elliptic equation rational expansion method and its application to (2+1)-dimensional Burgers equation Chaos, Solitons & Fractals. ,vol. 33, pp. 1546- 1551 ,(2007) , 10.1016/J.CHAOS.2006.03.002
Tang Xiao-Yan, Lou Sen-Yue, Variable Separation Solutions for the (2+1)-Dimensional Burgers Equation Chinese Physics Letters. ,vol. 20, pp. 335- 337 ,(2003) , 10.1088/0256-307X/20/3/306
Qi Wang, Yong Chen, Hongqing Zhang, A new Riccati equation rational expansion method and its application to (2+1)-dimensional Burgers equation Chaos, Solitons & Fractals. ,vol. 25, pp. 1019- 1028 ,(2005) , 10.1016/J.CHAOS.2005.01.039
Ying Jin-Ping, Lou Sen-Yue, Multilinear Variable Separation Approach in (3+1)-Dimensions: the Burgers Equation Chinese Physics Letters. ,vol. 20, pp. 1448- 1451 ,(2003) , 10.1088/0256-307X/20/9/311
Ma Hong-Cai, Ge Dong-Jie, Yu Yao-Dong, New periodic wave solutions, localized excitations and their interaction for 2+1-dimensional Burgers equation Chinese Physics B. ,vol. 17, pp. 4344- 4353 ,(2008) , 10.1088/1674-1056/17/12/002