Dirac integral equations for dielectric and plasmonic scattering

作者: Johan Helsing , Andreas Rosén

DOI:

关键词: PhysicsCauchy's integral formulaSurface plasmonPlasmonMathematical analysisIntegral equationDirac (software)Lipschitz continuityDirac equationScattering

摘要: A new integral equation formulation is presented for the Maxwell transmission problem in Lipschitz domains. It builds on Cauchy Dirac equation, free from false eigenwavenumbers a wider range of permittivities than other known formulations, can be used magnetic materials, applicable both two and three dimensions, does not suffer any low-frequency breakdown. Numerical results two-dimensional version formulation, including examples featuring surface plasmon waves, demonstrate competitiveness relative to state-of-the-art formulations that are constrained dimensions. However, our performs equally well as demonstrated companion paper.

参考文章(38)
Andreas Axelsson, René Grognaxd, Jeff Hogan, Alan McIntosh, Harmonic Analysis of Dirac Operators on Lipschitz Domains Springer, Dordrecht. pp. 231- 246 ,(2001) , 10.1007/978-94-010-0862-4_22
Andreas Axelsson, Alan McIntosh, Hodge Decompositions on Weakly Lipschitz Domains Birkhauser Verlag. pp. 3- 29 ,(2004) , 10.1007/978-3-0348-7838-8_1
Rainer Kress, David L. Colton, Integral equation methods in scattering theory ,(1983)
M. Ganesh, S.C. Hawkins, D. Volkov, An all-frequency weakly-singular surface integral equation for electromagnetism in dielectric media: Reformulation and well-posedness analysis Journal of Mathematical Analysis and Applications. ,vol. 412, pp. 277- 300 ,(2014) , 10.1016/J.JMAA.2013.10.059
S. Hao, A. H. Barnett, P. G. Martinsson, P. Young, High-order accurate methods for Nyström discretization of integral equations on smooth curves in the plane Advances in Computational Mathematics. ,vol. 40, pp. 245- 272 ,(2014) , 10.1007/S10444-013-9306-3
R. R. Coifman, A. McIntosh, Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^2$ pour les courbes lipschitziennes Annals of Mathematics. ,vol. 116, pp. 361- 387 ,(1982) , 10.2307/2007065
Johan Helsing, Anders Holst, None, Variants of an explicit kernel-split panel-based Nyström discretization scheme for Helmholtz boundary value problems Advances in Computational Mathematics. ,vol. 41, pp. 691- 708 ,(2015) , 10.1007/S10444-014-9383-Y
Martin Costabel, Boundary Integral Operators on Lipschitz Domains: Elementary Results SIAM Journal on Mathematical Analysis. ,vol. 19, pp. 613- 626 ,(1988) , 10.1137/0519043
Andreas Axelsson, Oblique and Normal Transmission Problems for Dirac Operators with Strongly Lipschitz Interfaces Communications in Partial Differential Equations. ,vol. 28, pp. 1911- 1941 ,(2003) , 10.1081/PDE-120025490
Andreas Axelsson, Transmission Problems and Boundary Operator Algebras Integral Equations and Operator Theory. ,vol. 50, pp. 147- 164 ,(2004) , 10.1007/S00020-003-1225-0