On the Returning Arrows of Graded Self-injective Algebras

作者: Wei He , Ying Yin , Jin Yun Guo

DOI:

关键词: AutomorphismQuiverFunctorMathematicsDiscrete mathematicsInjective functionTranslation (geometry)Extension (predicate logic)CombinatoricsDimension (graph theory)

摘要: A translation quiver $Q$ is a with mono map $\tau$, called translation, defined on subset of the vertices. Recently, varies construction gives rise to obtained from original one by inserting returning arrows, that is, arrows $x$ $ \tau x for certain vertices $x$. In this paper, we show such phenomenon also appear in Gabriel quivers graded self-injective algebras when construct trivial extension, using automorphism induced Nakayama functor as translation. We under condition, two numerical invariants, complexity and representation dimension, increase appear.

参考文章(18)
Victor Ginzburg, Calabi-Yau algebras arXiv: Algebraic Geometry. ,(2006)
Jin Yun Guo, On McKay Quiver and Covering Spaces arXiv: Representation Theory. ,(2010)
Alexander Beilinson, Victor Ginzburg, Wolfgang Soergel, Koszul Duality Patterns in Representation Theory Journal of the American Mathematical Society. ,vol. 9, pp. 473- 527 ,(1996) , 10.1090/S0894-0347-96-00192-0
Thomas Cassidy, Brad Shelton, PBW-deformation theory and regular central extensions Crelle's Journal. ,vol. 2007, pp. 1- 12 ,(2007) , 10.1515/CRELLE.2007.065
Osamu Iyama, Cluster tilting for higher Auslander algebras Advances in Mathematics. ,vol. 226, pp. 1- 61 ,(2011) , 10.1016/J.AIM.2010.03.004
Michael Artin, William F Schelter, Graded algebras of global dimension 3 Advances in Mathematics. ,vol. 66, pp. 171- 216 ,(1987) , 10.1016/0001-8708(87)90034-X
Osamu Iyama, Idun Reiten, Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras American Journal of Mathematics. ,vol. 130, pp. 1087- 1149 ,(2008) , 10.1353/AJM.0.0011
Petter Andreas Bergh, Representation dimension and finitely generated cohomology Advances in Mathematics. ,vol. 219, pp. 389- 400 ,(2008) , 10.1016/J.AIM.2008.05.007
M. Artin, J. Tate, M. Van den Bergh, Modules over regular algebras of dimension 3. Inventiones Mathematicae. ,vol. 106, pp. 335- 388 ,(1991) , 10.1007/BF01243916
D.-M. Lu, J. H. Palmieri, Q.-S. Wu, J. J. Zhang, Regular algebras of dimension 4 and their A∞-Ext-algebras Duke Mathematical Journal. ,vol. 137, pp. 537- 584 ,(2007) , 10.1215/S0012-7094-07-13734-7