Functions, Ordinals, Species

作者: G. Kreisel

DOI: 10.1016/S0049-237X(08)71192-3

关键词: Natural numberFunction (mathematics)AxiomChoice sequenceProof theoryAlgebraAxiomatic systemMathematics

摘要: Publisher Summary This chapter discusses the proof theory of formal classical analysis, formulated as a two-sorted axiomatic with variables for natural numbers and number theoretic functions basic relations equality function evaluation. The analyses notion free choice sequence in terms which continuous are defined have shown that evident axioms sequences unexpectedly weak ; particular, some theorems A, A’ cannot be derived from known axioms. purpose present is to summarize work past ten years on proposal put results perspective by comparing them other subsystems.

参考文章(11)
L. E. J. Brouwer, �ber Definitionsbereiche von- Funktionen Mathematische Annalen. ,vol. 97, pp. 60- 75 ,(1927) , 10.1007/BF01447860
G. Kreisel, A survey of proof theory Journal of Symbolic Logic. ,vol. 33, pp. 321- 388 ,(1968) , 10.2307/2270324
Solomon Feferman, Systems of Predicative Analysis Journal of Symbolic Logic. ,vol. 29, pp. 1- 30 ,(1964) , 10.2307/2269764
W.W. Tait, Infinitely Long Terms of Transfinite Type Studies in logic and the foundations of mathematics. ,vol. 40, pp. 176- 185 ,(1965) , 10.1016/S0049-237X(08)71689-6
G. Kreisel, Lawless sequences of natural numbers Compositio Mathematica. ,vol. 20, pp. 222- 248 ,(1968)
W. A. Howard, Functional interpretation of bar induction by bar recursion Compositio Mathematica. ,vol. 20, pp. 107- 124 ,(1968)
Harvey Gerber, An extension of Schütte's Klammersymbols Mathematische Annalen. ,vol. 174, pp. 203- 216 ,(1967) , 10.1007/BF01360719