Block preconditioners for fully implicit Runge-Kutta schemes applied to the Bidomain equations

作者: Kent-Andre Mardal , Trygve K. Nilssen , Gunnar A. Stafi

DOI:

关键词: MathematicsMathematical analysisDiscretizationApplied mathematicsHeat equationRunge–Kutta methodsBlock (telecommunications)Backward Euler method

摘要: Recently, the authors presented difierent block preconditioners for implicit Runge-Kutta discretization of heat equation. The were Jacobi and Gauss-Seidel preconditoners where blocks reused existing Euler same In this paper we will introduce similar Bidomain We will, by numerical experiments, show properties preconditon- ers, that higher-order equation may be superior to lower-order in some cases.

参考文章(17)
J. E. Dennis, Schnabel Jr., Robert B., A view of unconstrained optimization Optimization. pp. 1- 72 ,(1989) , 10.21236/ADA188327
Joakim Sundnes, Glenn Terje Lines, Xing Cai, Bjørn Frederik Nielsen, Kent-Andre Mardal, Aslak Tveito, Computing the electrical activity in the heart Springer. ,(2006)
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
C. Runge, Ueber die numerische Auflösung von Differentialgleichungen Mathematische Annalen. ,vol. 46, pp. 167- 178 ,(1895) , 10.1007/BF01446807
K.‐A. Mardal, T. K. Nilssen, G. A. Staff, Order-Optimal Preconditioners for Implicit Runge-Kutta Schemes Applied to Parabolic PDEs SIAM Journal on Scientific Computing. ,vol. 29, pp. 361- 375 ,(2007) , 10.1137/05064093X
Ernst Hairer, Gerhard Wanner, Stiff differential equations solved by Radau methods Journal of Computational and Applied Mathematics. ,vol. 111, pp. 93- 111 ,(1999) , 10.1016/S0377-0427(99)00134-X
Joakim Sundnes, Glenn Terje Lines, Aslak Tveito, An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso. Bellman Prize in Mathematical Biosciences. ,vol. 194, pp. 233- 248 ,(2005) , 10.1016/J.MBS.2005.01.001