Edge states in the integer quantum Hall effect and the Riemann surface of the Bloch function.

作者: Yasuhiro Hatsugai

DOI: 10.1103/PHYSREVB.48.11851

关键词: Winding numberPhysicsSquare latticeQuantum mechanicsDiophantine equationRiemann surfaceEnergy (signal processing)Bloch waveTight bindingQuantum Hall effect

摘要: We study edge states in the integral quantum Hall effect on a square lattice rational magnetic field \ensuremath{\varphi}=p/q. The system is periodic y direction but has two edges x direction. have found that energies of are given by zero points Bloch function some Riemann surface (RS) (complex energy surface) when size commensurate with flux. genus RS, g=q-1, number gaps. move around holes RS as momentum conductance ${\mathrm{\ensuremath{\sigma}}}_{\mathit{x}\mathit{y}}$ winding holes, which gives Thouless, Kohmoto, Nightingale, and den Nijs integers infinite system. This topological RS. can check this treatment same Diophantine equation numerically. Effects random potential also discussed.

参考文章(45)
K. v. Klitzing, G. Dorda, M. Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance Physical Review Letters. ,vol. 45, pp. 494- 497 ,(1980) , 10.1103/PHYSREVLETT.45.494
R. B. Laughlin, Quantized Hall conductivity in two dimensions Physical Review B. ,vol. 23, pp. 5632- 5633 ,(1981) , 10.1103/PHYSREVB.23.5632
D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential Physical Review Letters. ,vol. 49, pp. 405- 408 ,(1992) , 10.1103/PHYSREVLETT.49.405
A. Widom, Thermodynamic derivation of the Hall effect current Physics Letters A. ,vol. 90, pp. 474- 474 ,(1982) , 10.1016/0375-9601(82)90401-7
P Streda, Theory of quantised Hall conductivity in two dimensions Journal of Physics C: Solid State Physics. ,vol. 15, ,(1982) , 10.1088/0022-3719/15/22/005
Mahito Kohmoto, Topological invariant and the quantization of the Hall conductance Annals of Physics. ,vol. 160, pp. 343- 354 ,(1985) , 10.1016/0003-4916(85)90148-4
Qian Niu, D. J. Thouless, Yong-Shi Wu, Quantized Hall conductance as a topological invariant Physical Review B. ,vol. 31, pp. 3372- 3377 ,(1985) , 10.1103/PHYSREVB.31.3372
J. Zak, Magnetic Translation Group Physical Review. ,vol. 134, pp. 1602- 1606 ,(1964) , 10.1103/PHYSREV.134.A1602