Multiplexed CRISPR technologies for gene editing and transcriptional regulation.

作者: Nicholas S. McCarty , Alicia E. Graham , Lucie Studená , Rodrigo Ledesma-Amaro

DOI: 10.1038/S41467-020-15053-X

关键词: Regulation of gene expressionGenome editingGenome engineeringCRISPRComputational biologyTranscriptional regulationFuture studiesGuide RNABiological engineeringComputer science

摘要: Multiplexed CRISPR technologies, in which numerous gRNAs or Cas enzymes are expressed at once, have facilitated powerful biological engineering applications, vastly enhancing the scope and efficiencies of genetic editing transcriptional regulation. In this review, we discuss multiplexed technologies describe methods for assembly, expression processing synthetic guide RNA arrays vivo. Applications that benefit from including cellular recorders, circuits, biosensors, combinatorial perturbations, large-scale genome rewiring metabolic pathways, highlighted. We also offer a glimpse emerging challenges emphasize experimental considerations future studies.

参考文章(156)
Miguel A Moreno-Mateos, Charles E Vejnar, Jean-Denis Beaudoin, Juan P Fernandez, Emily K Mis, Mustafa K Khokha, Antonio J Giraldez, CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo Nature Methods. ,vol. 12, pp. 982- 988 ,(2015) , 10.1038/NMETH.3543
John G Doench, Ella Hartenian, Daniel B Graham, Zuzana Tothova, Mudra Hegde, Ian Smith, Meagan Sullender, Benjamin L Ebert, Ramnik J Xavier, David E Root, Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation Nature Biotechnology. ,vol. 32, pp. 1262- 1267 ,(2014) , 10.1038/NBT.3026
Daniel G Gibson, Lei Young, Ray-Yuan Chuang, J Craig Venter, Clyde A Hutchison, Hamilton O Smith, Enzymatic assembly of DNA molecules up to several hundred kilobases Nature Methods. ,vol. 6, pp. 343- 345 ,(2009) , 10.1038/NMETH.1318
Tadas Jakočiūnas, Ida Bonde, Markus Herrgård, Scott J Harrison, Mette Kristensen, Lasse E Pedersen, Michael K Jensen, Jay D Keasling, None, Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae Metabolic Engineering. ,vol. 28, pp. 213- 222 ,(2015) , 10.1016/J.YMBEN.2015.01.008
John P Guilinger, David B Thompson, David R Liu, Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification Nature Biotechnology. ,vol. 32, pp. 577- 582 ,(2014) , 10.1038/NBT.2909
Xingliang Ma, Qunyu Zhang, Qinlong Zhu, Wei Liu, Yan Chen, Rong Qiu, Bin Wang, Zhongfang Yang, Heying Li, Yuru Lin, Yongyao Xie, Rongxin Shen, Shuifu Chen, Zhi Wang, Yuanling Chen, Jingxin Guo, Letian Chen, Xiucai Zhao, Zhicheng Dong, Yao-Guang Liu, A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants Molecular Plant. ,vol. 8, pp. 1274- 1284 ,(2015) , 10.1016/J.MOLP.2015.04.007
Rachel E. Haurwitz, Martin Jinek, Blake Wiedenheft, Kaihong Zhou, Jennifer A. Doudna, Sequence- and Structure-Specific RNA Processing by a CRISPR Endonuclease Science. ,vol. 329, pp. 1355- 1358 ,(2010) , 10.1126/SCIENCE.1192272
Kabin Xie, Bastian Minkenberg, Yinong Yang, Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system Proceedings of the National Academy of Sciences of the United States of America. ,vol. 112, pp. 3570- 3575 ,(2015) , 10.1073/PNAS.1420294112
Yuchen Liu, Yayue Zeng, Li Liu, Chengle Zhuang, Xing Fu, Weiren Huang, Zhiming Cai, Synthesizing AND gate genetic circuits based on CRISPR-Cas9 for identification of bladder cancer cells Nature Communications. ,vol. 5, pp. 5393- ,(2014) , 10.1038/NCOMMS6393
Shengdar Q Tsai, Zongli Zheng, Nhu T Nguyen, Matthew Liebers, Ved V Topkar, Vishal Thapar, Nicolas Wyvekens, Cyd Khayter, A John Iafrate, Long P Le, Martin J Aryee, J Keith Joung, GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases Nature Biotechnology. ,vol. 33, pp. 187- 197 ,(2015) , 10.1038/NBT.3117