A proof of the Gamma test

作者: Dafydd Evans , Antonia J. Jones

DOI: 10.1098/RSPA.2002.1010

关键词: Bounded functionApplied mathematicsPoint processNonlinear modellingNoisePartial derivativeTest (assessment)Variance (accounting)StatisticsModuloMathematics

摘要: From a dataset of input–output vectors, the Gamma test estimates variance noise on an output modulo any smooth model with bounded partial derivatives. We present proof under fairly weak hypotheses.

参考文章(12)
Floris Takens, Detecting strange attractors in turbulence Lecture Notes in Mathematics. ,vol. 898, pp. 366- 381 ,(1981) , 10.1007/BFB0091924
Adoalbjörn Stefánsson, N. Končar, Antonia J. Jones, A note on the Gamma test Neural Computing and Applications. ,vol. 5, pp. 131- 133 ,(1997) , 10.1007/BF01413858
Peter J. Bickel, Leo Breiman, Sums of Functions of Nearest Neighbor Distances, Moment Bounds, Limit Theorems and a Goodness of Fit Test Annals of Probability. ,vol. 11, pp. 185- 214 ,(1983) , 10.1214/AOP/1176993668
Dafydd Evans, Antonia J. Jones, Wolfgang M. Schmidt, Asymptotic moments of near–neighbour distance distributions Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. ,vol. 458, pp. 2839- 2849 ,(2002) , 10.1098/RSPA.2002.1011
A. D. Wyner, Capabilities of Bounded Discrepancy Decoding Bell System Technical Journal. ,vol. 44, pp. 1061- 1122 ,(1965) , 10.1002/J.1538-7305.1965.TB04170.X
A. P. M. Tsui, A. J. Jones, A. Guedes de Oliveira, The Construction of Smooth Models using Irregular Embeddings Determined by a Gamma Test Analysis Neural Computing & Applications. ,vol. 10, pp. 318- 329 ,(2002) , 10.1007/S005210200004
N. A. Chuzhanova, A. J. Jones, S. Margetts, Feature selection for genetic sequence classification Bioinformatics. ,vol. 14, pp. 139- 143 ,(1998) , 10.1093/BIOINFORMATICS/14.2.139
Antonia J. Jones, Dafydd Evans, Steve Margetts, Peter J. Durrant, The Gamma Test IGI Global. pp. 142- 167 ,(2002) , 10.4018/978-1-930708-26-6.CH009
Allon G Percus, Olivier C Martin, Scaling Universalities ofkth-Nearest Neighbor Distances on Closed Manifolds Advances in Applied Mathematics. ,vol. 21, pp. 424- 436 ,(1998) , 10.1006/AAMA.1998.0607