Particle hydrodynamics with tessellation techniques

作者: Steffen Heß , Volker Springel

DOI: 10.1111/J.1365-2966.2010.16892.X

关键词: MechanicsParticleAstrophysicsPhysicsKernel (image processing)Tessellation (computer graphics)Spurious relationshipSmoothed-particle hydrodynamicsTurbulenceVoronoi diagramClassification of discontinuities

摘要: Lagrangian smoothed particle hydrodynamics (SPH) is a well-established approach to model fluids in astrophysical problems, thanks its geometric flexibility and ability automatically adjust the spatial resolution clumping of matter. However, number recent studies have emphasized inaccuracies SPH treatment fluid instabilities. The origin these numerical problems can be traced back spurious surface effects across contact discontinuities, SPH's inherent prevention mixing at level. We here investigate new where density estimate carried out with help an auxiliary mesh constructed as Voronoi tessellation simulation particles instead adaptive smoothing kernel. This Voronoi-based improves scheme represent sharp discontinuities. show that this eliminates tension present play role suppressing certain find `Voronoi Particle Hydrodynamics' described produces comparable results than shocks, better ones turbulent regimes pure hydrodynamical simulations. also discuss formulations artificial viscosity needed how judiciously chosen correction forces derived order maintain high degree hence regular mesh. especially helpful simulating self-gravitating existing gravity solvers used for N-body

参考文章(38)
Oscar Agertz, Ben Moore, Joachim Stadel, Doug Potter, Francesco Miniati, Justin Read, Lucio Mayer, Artur Gawryszczak, Andrey Kravtsov, Åke Nordlund, Frazer Pearce, Vicent Quilis, Douglas Rudd, Volker Springel, James Stone, Elizabeth Tasker, Romain Teyssier, James Wadsley, Rolf Walder, Fundamental differences between SPH and grid methods Monthly Notices of the Royal Astronomical Society. ,vol. 380, pp. 963- 978 ,(2007) , 10.1111/J.1365-2966.2007.12183.X
Dinshaw S. Balsara, von Neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms Journal of Computational Physics. ,vol. 121, pp. 357- 372 ,(1995) , 10.1016/S0021-9991(95)90221-X
Romeel Davé, John Dubinski, Lars Hernquist, Parallel TreeSPH ,(1997) , 10.1016/S1384-1076(97)00019-5
G. De Fabritiis, M. Serrano, R. Delgado-Buscalioni, P. V. Coveney, Fluctuating hydrodynamic modeling of fluids at the nanoscale. Physical Review E. ,vol. 75, pp. 026307- ,(2007) , 10.1103/PHYSREVE.75.026307
K. Dolag, F. Vazza, G. Brunetti, G. Tormen, Turbulent gas motions in galaxy cluster simulations: The role of SPH viscosity arXiv: Astrophysics. ,(2005) , 10.1111/J.1365-2966.2005.09630.X
August E. Evrard, Beyond N-body: 3D cosmological gas dynamics Monthly Notices of the Royal Astronomical Society. ,vol. 235, pp. 911- 934 ,(1988) , 10.1093/MNRAS/235.3.911
C. S. Frenk, S. D. M. White, P. Bode, J. R. Bond, G. L. Bryan, R. Cen, H. M. P. Couchman, A. E. Evrard, N. Gnedin, A. Jenkins, A. M. Khokhlov, A. Klypin, J. F. Navarro, M. L. Norman, J. P. Ostriker, J. M. Owen, F. R. Pearce, U.‐L. Pen, M. Steinmetz, P. A. Thomas, J. V. Villumsen, J. W. Wadsley, M. S. Warren, G. Xu, G. Yepes, The Santa Barbara cluster comparison project: A comparison of cosmological hydrodynamics solutions The Astrophysical Journal. ,vol. 525, pp. 554- 582 ,(1999) , 10.1086/307908
R. A. Gingold, J. J. Monaghan, Smoothed particle hydrodynamics: Theory and application to non-spherical stars Monthly Notices of the Royal Astronomical Society. ,vol. 181, pp. 375- 389 ,(1977) , 10.1093/MNRAS/181.3.375
Lars Hernquist, Neal Katz, TREESPH: A Unification of SPH with the Hierarchical Tree Method Astrophysical Journal Supplement Series. ,vol. 70, pp. 419- 446 ,(1989) , 10.1086/191344
Martin Jubelgas, Volker Springel, Klaus Dolag, Thermal conduction in cosmological SPH simulations arXiv: Astrophysics. ,(2004) , 10.1111/J.1365-2966.2004.07801.X