Hierarchical Machine Learning Model for Mechanical Property Predictions of Polyurethane Elastomers from Small Datasets

作者: Aditya Menon , James A. Thompson-Colón , Newell R. Washburn

DOI: 10.3389/FMATS.2019.00087

关键词: MonomerThermoplasticIntermolecular forceThermosetting polymerBifunctionalPolymerElastomerArtificial intelligenceMachine learningPolymerizationMaterials science

摘要: Polyurethanes are a broad class of material that finds application in coatings, foams, and solid elastomers. The urethane chemistry allows diversity monomers to be used, prediction mechanical properties, which determined by complex interplay between monomer chain architecture, is an unresolved challenge. Urethanes based on aromatic or cyclic isocyanates linear branched polyols, polymerization results chains for bifunctional multifunctional monomers. Strong intermolecular interactions groups result the formation hard-segment domains generate physical crosslinks disorganized rubbery anchor microstructure, contributing resistance deformation. Here, general hierarchical machine learning (HML) model predicting stress-at-break, strain-at-break, Tan δ thermoplastic thermoset polyurethanes presented. algorithm was trained library 18 polymers with different diisocyanates, trifunctional NCO:OH index. HML reduces data requirements through robust embedding domain knowledge surrogate middle layer bridges input variables (composition) output responses (mechanical properties). In this work, included information overall polymer composition, predictions architecture derived from Monte Carlo simulations polymerization, interchain empirically molecular potentials shifts infrared (IR) spectroscopy absorbances. shown more accurate than those Random Forest directly relating composition suggesting provides significant advantages properties systems small datasets.

参考文章(28)
Zoran S. Petrović, Wei Zhang, Alisa Zlatanić, Charlene C. Lava, Michal Ilavskyý, Effect of OH/NCO Molar Ratio on Properties of Soy-Based Polyurethane Networks Journal of Polymers and The Environment. ,vol. 10, pp. 5- 12 ,(2002) , 10.1023/A:1021009821007
H.W. Siesler, Fourier transform infrared (ftir) spectroscopy in polymer research Journal of Molecular Structure. ,vol. 59, pp. 15- 37 ,(1980) , 10.1016/0022-2860(80)85063-0
Ying Li, Shan Tang, Brendan C. Abberton, Martin Kröger, Craig Burkhart, Bing Jiang, George J. Papakonstantopoulos, Mike Poldneff, Wing Kam Liu, A predictive multiscale computational framework for viscoelastic properties of linear polymers Polymer. ,vol. 53, pp. 5935- 5952 ,(2012) , 10.1016/J.POLYMER.2012.09.055
Joel P. Foreman, David Porter, Shabnam Behzadi, Frank R. Jones, A model for the prediction of structure–property relations in cross-linked polymers Polymer. ,vol. 49, pp. 5588- 5595 ,(2008) , 10.1016/J.POLYMER.2008.09.034
Felicia Levine, John Escarsega, John La Scala, Effect of isocyanate to hydroxyl index on the properties of clear polyurethane films Progress in Organic Coatings. ,vol. 74, pp. 572- 581 ,(2012) , 10.1016/J.PORGCOAT.2012.02.004
E. Kontou, G. Spathis, M. Niaounakis, V. Kefalas, Physical and chemical cross-linking effects in polyurethane elastomers Colloid and Polymer Science. ,vol. 268, pp. 636- 644 ,(1990) , 10.1007/BF01410405
Cattaleeya Pattamaprom, Ronald G. Larson, Timothy J. Van Dyke, Quantitative predictions of linear viscoelastic rheological properties of entangled polymers Rheologica Acta. ,vol. 39, pp. 517- 531 ,(2000) , 10.1007/S003970000104
Kilho Eom, Pai-Chi Li, Dmitrii E. Makarov, Gregory J. Rodin, Relationship between the mechanical properties and topology of cross-linked polymer molecules: Parallel strands maximize the strength of model polymers and protein domains Journal of Physical Chemistry B. ,vol. 107, pp. 8730- 8733 ,(2003) , 10.1021/JP035178X
Yu-Min Tsai, Tzyy-Lung Yu, Yu-Hsien Tseng, Physical properties of crosslinked polyurethane Polymer International. ,vol. 47, pp. 445- 450 ,(1998) , 10.1002/(SICI)1097-0126(199812)47:4<445::AID-PI82>3.0.CO;2-B
E. van Ruymbeke, R. Keunings, V. Stéphenne, A. Hagenaars, C. Bailly, Evaluation of Reptation Models for Predicting the Linear Viscoelastic Properties of Entangled Linear Polymers Macromolecules. ,vol. 35, pp. 2689- 2699 ,(2002) , 10.1021/MA011271C