Rough sets in identification of cellular automata for medical image processing

作者: B. Płaczek

DOI:

关键词: Convex hullRough setComputer scienceImage processingPattern recognitionArtificial intelligenceParameter identification problemSkeletonizationComputer visionBinary imageCellular automatonSelection rule

摘要: In this paper a method is proposed which enables identification of cellular automata (CA) that extract lowlevel features in medical images. The CA problem includes determination neighbourhood and transition rule on the basis training solution uses data mining techniques based rough sets theory. Neighbourhood detected by reducts calculations rule-learning algorithms are applied to induce rules for CA. Experiments were performed explore possibility boundary detection, convex hull transformation skeletonization binary experimental results show approach allows finding useful extraction specific microscopic images blood specimens.

参考文章(21)
Chiaki Sakama, Ken-ichi Maeda, Identifying Cellular Automata Rules Journal of Cellular Automata. ,vol. 2, pp. 1- 20 ,(2007)
Jerzy W. Grzymala-Busse, LERS-A System for Learning from Examples Based on Rough Sets Intelligent Decision Support. pp. 3- 18 ,(1992) , 10.1007/978-94-015-7975-9_1
Jan G. Bazan, Marcin Szczuka, The Rough Set Exploration System Transactions on Rough Sets III. ,vol. 3400, pp. 37- 56 ,(2005) , 10.1007/11427834_2
Yifan Zhao, Stephen A. Billings, The identification of cellular automata Journal of Cellular Automata. ,vol. 2, pp. 47- 65 ,(2006)
Sihem Slatnia, Mohamed Batouche, Kamal E. Melkemi, Evolutionary Cellular Automata Based-Approach for Edge Detection Applications of Fuzzy Sets Theory. pp. 404- 411 ,(2007) , 10.1007/978-3-540-73400-0_51
Andrew I. Adamatzky, Identification of cellular automata ,(1994)
Bas Straatman, Roger White, Guy Engelen, Towards an automatic calibration procedure for constrained cellular automata Computers, Environment and Urban Systems. ,vol. 28, pp. 149- 170 ,(2004) , 10.1016/S0198-9715(02)00068-6
Fred C. Richards, Thomas P. Meyer, Norman H. Packard, Extracting cellular automaton rules directly from experimental data Physica D: Nonlinear Phenomena. ,vol. 45, pp. 189- 202 ,(1991) , 10.1016/0167-2789(90)90182-O
Andrew Adamatzky, Automatic programming of cellular automata: identification approach Kybernetes. ,vol. 26, pp. 126- 135 ,(1997) , 10.1108/03684929710163074
Blanca Priego, Daniel Souto, Francisco Bellas, Richard J Duro, None, Hyperspectral image segmentation through evolved cellular automata Pattern Recognition Letters. ,vol. 34, pp. 1648- 1658 ,(2013) , 10.1016/J.PATREC.2013.03.033