Constructions for quantum computing with symmetrized gates

作者: Lajos Rónyai , Gábor Ivanyos , Attila B. Nagy

DOI: 10.5555/2011772.2011776

关键词: QubitSymmetry groupPolynomialMathematicsQuantum computerInitializationAlgebraCommutator (electric)Fraction (mathematics)Set (abstract data type)Discrete mathematics

摘要: We investigate constructions for simulating quantum computers with a polynomial slowdown on ensembles composed of qubits which symmetrized versions one- and two-qubit gates can be performed. The simulation is based taking Lie commutators Hamiltonians to extract at desired local positions. During the simulation, only part used storing information, others are left unchanged by commutators. propose various symmetry groups where pretty large fraction used. As few other need set one, our construction requires individual initialization some qubits.

参考文章(19)
Isaac L. Chuang, Michael A. Nielsen, Quantum Computation and Quantum Information ,(2000)
Simon C. Benjamin, Alastair Kay, Adel Bririd, Quantum error correction in globally controlled arrays arXiv: Quantum Physics. ,(2003)
G. Ivanyos, S. Massar, A. B. Nagy, Quantum computing on lattices using global two-qubit gates Physical Review A. ,vol. 72, pp. 022339- ,(2005) , 10.1103/PHYSREVA.72.022339
Christina V. Kraus, Michael M. Wolf, J. Ignacio Cirac, Quantum simulations under translational symmetry Physical Review A. ,vol. 75, pp. 022303- ,(2007) , 10.1103/PHYSREVA.75.022303
K. G. H. Vollbrecht, J. I. Cirac, Quantum simulators, continuous-time automata, and translationally invariant systems. Physical Review Letters. ,vol. 100, pp. 010501- ,(2008) , 10.1103/PHYSREVLETT.100.010501
Mireille Boutin, Gregor Kemper, On reconstructing n-point configurations from the distribution of distances or areas Advances in Applied Mathematics. ,vol. 32, pp. 709- 735 ,(2004) , 10.1016/S0196-8858(03)00101-5
Simon C Benjamin, Multi-qubit gates in arrays coupled by ‘always-on’ interactions New Journal of Physics. ,vol. 6, pp. 61- 61 ,(2004) , 10.1088/1367-2630/6/1/061
David P. DiVincenzo, Two-bit gates are universal for quantum computation Physical Review A. ,vol. 51, pp. 1015- 1022 ,(1995) , 10.1103/PHYSREVA.51.1015
K. G. H. Vollbrecht, J. I. Cirac, Reversible universal quantum computation within translation-invariant systems Physical Review A. ,vol. 73, pp. 012324- ,(2006) , 10.1103/PHYSREVA.73.012324