Deep Learning‐Enabled Imaging Flow Cytometry for High‐Speed Cryptosporidium and Giardia Detection

作者: Shaobo Luo , Kim Truc Nguyen , Binh TT Nguyen , Shilun Feng , Yuzhi Shi

DOI: 10.1002/CYTO.A.24321

关键词: Imaging flow cytometryArtificial intelligenceThroughput (business)Artificial neural networkCryptosporidiumPattern recognitionGiardiaConvolutional neural networkDeep learningComputer scienceFrame rate

摘要: Imaging flow cytometry has become a popular technology for bioparticle images analysis because of its capability capturing thousands per second. Nevertheless, the vast number generated by imaging imposes great challenges data especially when species have similar morphologies. In this work, we report deep learning-enabled high-throughput system predicting Cryptosporidium and Giardia in drinking water. This combines an efficient artificial neural network called MCellNet, which achieves classification accuracy >99.6%. The can detect with sensitivity 97.37% specificity 99.95%. high-speed reaches 346 frames second, outperforming state-of-the-art learning algorithm MobileNetV2 speed (251 second) comparable accuracy. reported empowers rapid, accurate, high throughput detection clinical diagnostics, environmental monitoring other potential biosensing applications. article is protected copyright. All rights reserved.

参考文章(42)
Uta Erdbrügger, Christine K. Rudy, Mark E. Etter, Kelly A. Dryden, Mark Yeager, Alexander L. Klibanov, Joanne Lannigan, Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytometry Part A. ,vol. 85, pp. 756- 770 ,(2014) , 10.1002/CYTO.A.22494
Amit Satpathy, Xudong Jiang, How-Lung Eng, Human Detection by Quadratic Classification on Subspace of Extended Histogram of Gradients IEEE Transactions on Image Processing. ,vol. 23, pp. 287- 297 ,(2014) , 10.1109/TIP.2013.2264677
K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, B. Jalali, High-throughput single-microparticle imaging flow analyzer Proceedings of the National Academy of Sciences of the United States of America. ,vol. 109, pp. 11630- 11635 ,(2012) , 10.1073/PNAS.1204718109
Maria Ines Z. Sato, Ana Tereza Galvani, Jose Antonio Padula, Adelaide Cassia Nardocci, Marcelo de Souza Lauretto, Maria Tereza Pepe Razzolini, Elayse Maria Hachich, Assessing the infection risk of Giardia and Cryptosporidium in public drinking water delivered by surface water systems in Sao Paulo State, Brazil. Science of The Total Environment. ,vol. 442, pp. 389- 396 ,(2013) , 10.1016/J.SCITOTENV.2012.09.077
Eric R. Fossum, Donald B. Hondongwa, A Review of the Pinned Photodiode for CCD and CMOS Image Sensors IEEE Journal of the Electron Devices Society. ,vol. 2, pp. 33- 43 ,(2014) , 10.1109/JEDS.2014.2306412
Erin Dreelin, Rebecca Ives, Stephanie Molloy, Joan Rose, Cryptosporidium and Giardia in Surface Water: A Case Study from Michigan, USA to Inform Management of Rural Water Systems International Journal of Environmental Research and Public Health. ,vol. 11, pp. 10480- 10503 ,(2014) , 10.3390/IJERPH111010480
Carlos E. Pedreira, Elaine S. Costa, Quentin Lecrevisse, Jacques J.M. van Dongen, Alberto Orfao, Overview of clinical flow cytometry data analysis: recent advances and future challenges Trends in Biotechnology. ,vol. 31, pp. 415- 425 ,(2013) , 10.1016/J.TIBTECH.2013.04.008
Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, Édouard Duchesnay, Scikit-learn: Machine Learning in Python Journal of Machine Learning Research. ,vol. 12, pp. 2825- 2830 ,(2011)
Ethan Schonbrun, Sai Siva Gorthi, Diane Schaak, Microfabricated multiple field of view imaging flow cytometry Lab on a Chip. ,vol. 12, pp. 268- 273 ,(2012) , 10.1039/C1LC20843H
Yingying Wang, Frederik Hammes, Karen De Roy, Willy Verstraete, Nico Boon, Past, present and future applications of flow cytometry in aquatic microbiology. Trends in Biotechnology. ,vol. 28, pp. 416- 424 ,(2010) , 10.1016/J.TIBTECH.2010.04.006