作者: Huaxin Lin
DOI: 10.1215/S0012-7094-04-12514-X
关键词: Separable space 、 Unital 、 Operator algebra 、 Universal coefficient theorem 、 Topology 、 Combinatorics 、 Zero (complex analysis) 、 Simple (abstract algebra) 、 Rank (linear algebra) 、 Classification theorem 、 Mathematics
摘要: We give a classification theorem for unital separable simple nuclear $C^*$-algebras with tracial topological rank zero which satisfy the Universal Coefficient Theorem. prove that if $A$ and $B$ are two such $$ (K_0(A), K_0(A)_+, [1_A], K_1(A)) \cong (K_0(B), K_0(B)_+, [1_B], K_1(B)), then $A\cong B.$