Classification of simple C*-algebras of tracial topological rank zero

作者: Huaxin Lin

DOI: 10.1215/S0012-7094-04-12514-X

关键词: Separable spaceUnitalOperator algebraUniversal coefficient theoremTopologyCombinatoricsZero (complex analysis)Simple (abstract algebra)Rank (linear algebra)Classification theoremMathematics

摘要: We give a classification theorem for unital separable simple nuclear $C^*$-algebras with tracial topological rank zero which satisfy the Universal Coefficient Theorem. prove that if $A$ and $B$ are two such $$ (K_0(A), K_0(A)_+, [1_A], K_1(A)) \cong (K_0(B), K_0(B)_+, [1_B], K_1(B)), then $A\cong B.$

参考文章(58)
George A. Elliott, The Classification Problem for Amenable C*-Algebras Birkhäuser Basel. pp. 922- 932 ,(1995) , 10.1007/978-3-0348-9078-6_85
George A. Elliott, A Classification of Certain Simple C*-Algebras Springer, Dordrecht. pp. 373- 385 ,(1993) , 10.1007/978-94-017-2823-2_29
M. Rørdam, Classification of Nuclear, Simple C*-algebras Springer Berlin Heidelberg. pp. 1- 145 ,(2002) , 10.1007/978-3-662-04825-2_1
Edward G. Effros, Dimensions and C*-algebras ,(1981)
Marius Dadarlat, Terry A. Loring, A universal multicoefficient theorem for the Kasparov groups Duke Mathematical Journal. ,vol. 84, pp. 355- 377 ,(1996) , 10.1215/S0012-7094-96-08412-4
Bruce Blackadar, K-Theory for Operator Algebras ,(1986)
Søren Eilers, Dorte Olesen, C-Algebras and Their Automorphism Groups ,(1979)
Vern I. Paulsen, Completely bounded maps and dilations John Wiley & Sons, Inc.. ,(1987)
Shuang Zhang, Certain $C^\ast$-algebras with real rank zero and their corona and multiplier algebras. I. Pacific Journal of Mathematics. ,vol. 155, pp. 169- 197 ,(1992) , 10.2140/PJM.1992.155.169
George A. Elliott, Guihua Gong, Huaxin Lin, Cornel Pasnicu, Abelian C∗-subalgebras of C∗-algebras of real rank zero and inductive limit C∗-algebras Duke Mathematical Journal. ,vol. 85, pp. 511- 554 ,(1996) , 10.1215/S0012-7094-96-08520-8