Efficient Computation of Bayesian Optimal Discriminating Designs

作者: Holger Dette , Roman Guchenko , Viatcheslav B. Melas

DOI: 10.1080/10618600.2016.1195272

关键词: Kullback–Leibler divergencePrior probabilityMathematicsBayesian experimental designArtificial intelligenceFocus (optics)ComputationAlgorithmDesign of experimentsMachine learningBayesian probabilityHomoscedasticity

摘要: ABSTRACTAn efficient algorithm for the determination of Bayesian optimal discriminating designs competing regression models is developed, where main focus on with general distributional assumptions beyond “classical” case normally distributed homoscedastic errors. For this purpose, we consider a version Kullback–Leibler (KL). Discretizing prior distribution leads to local KL-optimal design problems large number models. All currently available methods either require amount computation time or fail calculate design, because they can only deal efficiently few model comparisons. In article, develop new respect criterion. It demonstrated that able reasonable accuracy and computational in situa...

参考文章(27)
Adam Morawiec, Some Statistical Issues Springer, Berlin, Heidelberg. pp. 81- 92 ,(2004) , 10.1007/978-3-662-09156-2_5
José C. Pinheiro, Frank Bretz, Michael Branson, Analysis of Dose–Response Studies—Modeling Approaches Springer, New York, NY. pp. 146- 171 ,(2006) , 10.1007/0-387-33706-7_10
Stefanie Biedermann, Holger Dette, Andrey Pepelyshev, Some robust design strategies for percentile estimation in binary response models Canadian Journal of Statistics-revue Canadienne De Statistique. ,vol. 34, pp. 603- 622 ,(2006) , 10.1002/CJS.5550340404
C. Tommasi, J. López-Fidalgo, Bayesian optimum designs for discriminating between models with any distribution Computational Statistics & Data Analysis. ,vol. 54, pp. 143- 150 ,(2010) , 10.1016/J.CSDA.2009.07.022
H. Dette, A Generalization of $D$- and $D_1$-Optimal Designs in Polynomial Regression Annals of Statistics. ,vol. 18, pp. 1784- 1804 ,(1990) , 10.1214/AOS/1176347878
Holger Dette, Gerd Haller, Optimal designs for the identification of the order of a Fourier regression Annals of Statistics. ,vol. 26, pp. 1496- 1521 ,(1998) , 10.1214/AOS/1024691251
Stephen M. Stigler, Optimal Experimental Design for Polynomial Regression Journal of the American Statistical Association. ,vol. 66, pp. 311- 318 ,(1971) , 10.1080/01621459.1971.10482260
J. Kiefer, General Equivalence Theory for Optimum Designs (Approximate Theory) Annals of Statistics. ,vol. 2, pp. 849- 879 ,(1974) , 10.1214/AOS/1176342810
Henry P. Wynn, The Sequential Generation of $D$-Optimum Experimental Designs Annals of Mathematical Statistics. ,vol. 41, pp. 1655- 1664 ,(1970) , 10.1214/AOMS/1177696809