Microbial reduction of metal-organic frameworks enables synergistic chromium removal.

作者: Sarah K. Springthorpe , Christopher M. Dundas , Benjamin K. Keitz

DOI: 10.1038/S41467-019-13219-W

关键词: PollutantChromiumNanotechnologyMetalRedoxMetal-organic frameworkShewanella oneidensisMicrobial metabolismChemistrySynthetic materials

摘要: Redox interactions between electroactive bacteria and inorganic materials underpin many emerging technologies, but commonly used (e.g., metal oxides) suffer from limited tunability can be challenging to characterize. In contrast, metal-organic frameworks exhibit well-defined structures, large surface areas, extensive chemical tunability, their utility as microbial substrates has not been examined. Here, we report that support the growth of metal-respiring bacterium Shewanella oneidensis, specifically through reduction Fe(III). a practical application, show cultures containing S. oneidensis reduced remediate lethal concentrations Cr(VI) over multiple cycles, pollutant removal exceeds performance either component in isolation or bio-reduced iron oxides. Our results demonstrate serve suggest they may offer an alternative oxides applications seeking combine advantages bacterial metabolism synthetic materials.

参考文章(64)
The Iron Oxides Wiley‐VCH Verlag GmbH. pp. 5- 18 ,(2003) , 10.1002/9783527613229.CH01
Dan Coursolle, Jeffrey A. Gralnick, Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR-1. Molecular Microbiology. ,vol. 77, pp. 995- 1008 ,(2010) , 10.1111/J.1365-2958.2010.07266.X
Derek R. Lovley, Elizabeth J. P. Phillips, Debra J. Lonergan, Hydrogen and Formate Oxidation Coupled to Dissimilatory Reduction of Iron or Manganese by Alteromonas putrefaciens Applied and Environmental Microbiology. ,vol. 55, pp. 700- 706 ,(1989) , 10.1128/AEM.55.3.700-706.1989
Fanghua Liu, Amelia-Elena Rotaru, Pravin M. Shrestha, Nikhil S. Malvankar, Kelly P. Nevin, Derek R. Lovley, Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environmental Microbiology. ,vol. 17, pp. 648- 655 ,(2015) , 10.1111/1462-2920.12485
Beizhan Yan, Brian A. Wrenn, Soubir Basak, Pratim Biswas, Daniel E. Giammar, Microbial reduction of Fe(III) in hematite nanoparticles by Geobacter sulfurreducens. Environmental Science & Technology. ,vol. 42, pp. 6526- 6531 ,(2008) , 10.1021/ES800620F
Dinesh Mohan, Charles U. Pittman Jr., Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials. ,vol. 137, pp. 762- 811 ,(2006) , 10.1016/J.JHAZMAT.2006.06.060
Madeline Vargas, Kazem Kashefi, Elizabeth L. Blunt-Harris, Derek R. Lovley, Microbiological evidence for Fe(III) reduction on early Earth. Nature. ,vol. 395, pp. 65- 67 ,(1998) , 10.1038/25720
Eric E. Roden, John M. Zachara, Microbial Reduction of Crystalline Iron(III) Oxides: Influence of Oxide Surface Area and Potential for Cell Growth Environmental Science & Technology. ,vol. 30, pp. 1618- 1628 ,(1996) , 10.1021/ES9506216
Hui Tan, Obiefune K. Ezekoye, James van der Schalie, Mark W. Horn, Akhlesh Lakhtakia, Jian Xu, William D. Burgos, Biological reduction of nanoengineered iron(III) oxide sculptured thin films. Environmental Science & Technology. ,vol. 40, pp. 5490- 5495 ,(2006) , 10.1021/ES060388J