On $L$-functions of quadratic $\mathbb {Q}$-curves

作者: Peter Bruin , Andrea Ferraguti

DOI: 10.1090/MCOM/3217

关键词: MathematicsRank (differential topology)Lattice (group)CombinatoricsConjectureIntegerProduct (mathematics)Algebraic number fieldOmegaDiscriminantAlgebra and Number TheoryApplied mathematicsComputational mathematics

摘要: Let $K$ be a quadratic number field of discriminant $\Delta_K$, let $E$ $\mathbb Q$-curve without CM completely defined over and $\omega_E$ an invariant differential on $E$. $L(E,s)$ the $L$-function In this setting, it is known that possesses analytic continuation to C$. The period can written (up power $2$) as product Tamagawa numbers with $\Omega_E/\sqrt{|\Delta_K|}$, where $\Omega_E$ quantity, independent $\omega_E$, which encodes real periods when covolume lattice imaginary. paper we compute, under generalized Manin conjecture, effective nonzero integer $Q=Q(E,\omega_E)$ such if $L(E,1)\neq 0$ then $L(E,1)\cdot Q\cdot\sqrt{|\Delta_K|}/\Omega_E$ integer. Computing $L(E,1)$ up sufficiently high precision, our result allows us prove $L(E,1)=0$ whenever case compute $L$-ratio $L(E,1)\cdot\sqrt{|\Delta_K|}/\Omega_E$ 0$. An important ingredient algorithm newform $f$ weight $2$ level $\Gamma_1(N)$ $L(E,s)=L(f,s)\cdot L({}^{\sigma\!} f,s)$, for ${}^{\sigma\!} f$ unique Galois conjugate $f$. As application these results, verify validity weak BSD conjecture some Q$-curves rank will curve $0$.

参考文章(54)
Henri Carayol, Sur les représentations $l$-adiques associées aux formes modulaires de Hilbert Annales Scientifiques De L Ecole Normale Superieure. ,vol. 19, pp. 409- 468 ,(1986) , 10.24033/ASENS.1512
Kenneth A. Ribet, Galois representations attached to eigenforms with nebentypus Springer, Berlin, Heidelberg. pp. 18- 52 ,(1977) , 10.1007/BFB0063943
Noam D. Elkies, On Elliptic K-curves Birkhäuser Basel. pp. 81- 91 ,(2004) , 10.1007/978-3-0348-7919-4_6
David E. Rohrlich, George F. Rohrlich, Modular Curves, Hecke Correspondences, and L-Functions Modular Forms and Fermat’s Last Theorem. pp. 41- 100 ,(1997) , 10.1007/978-1-4612-1974-3_3
Jean-Pierre Serre, Modular forms of weight one and Galois representations Springer Berlin Heidelberg. pp. 292- 367 ,(2003) , 10.1007/978-3-642-39816-2_110
Jordan S. Ellenberg, ℚ-Curves and Galois Representations Birkhäuser, Basel. pp. 93- 103 ,(2004) , 10.1007/978-3-0348-7919-4_7
Henri Darmon, Wiles’ Theorem and the Arithmetic of Elliptic Curves Modular Forms and Fermat’s Last Theorem. pp. 549- 569 ,(1997) , 10.1007/978-1-4612-1974-3_21
Glenn H. Stevens, Arithmetic on modular curves ,(1982)
Ahmed Abbes, Emmanuel Ullmo, À propos de la conjecture de Manin pour les courbes elliptiques modulaires Compositio Mathematica. ,vol. 103, pp. 269- 286 ,(1996)
Pierre Deligne, Formes modulaires et représentations e-adiques Lecture Notes in Mathematics. ,vol. 11, pp. 139- 172 ,(1971) , 10.1007/BFB0058810