Calculation of native defect energies in α-A12O3 and α-Cr2O3 using a modified Matsui potential

作者: Jizhong Sun , T. Stirner , A. Matthews

DOI: 10.1016/J.SURFCOAT.2006.08.063

关键词: ThermodynamicsDiffusionCatalysisAluminium oxideKröger–Vink notationChemical kineticsChromiaWork (thermodynamics)Schottky diodeMaterials science

摘要: Abstract Alumina and chromia are very important materials in the surface coatings industry, e.g. for corrosion protection as catalyst supports. The type of defects associated formation energy these direct relevance to stability reaction kinetics. In present work, a modified Matsui potential is applied calculate native point defect energies α-Al2O3 α-Cr2O3 based on Mott–Littleton theory. Particular attention paid convergence with number atoms surrounding defect. results show that relative values such Schottky smaller than either Frenkel energies, which agreement experimental data recent first-principles calculations. implications findings diffusion mechanisms kinetics discussed briefly.

参考文章(16)
Jizhong Sun, T. Stirner, W.E. Hagston, A. Leyland, A. Matthews, A simple transferable interatomic potential model for binary oxides applied to bulk α-Al2O3 and the (0 0 0 1) α-Al2O3 surface Journal of Crystal Growth. ,vol. 290, pp. 235- 240 ,(2006) , 10.1016/J.JCRYSGRO.2005.12.076
Katsuyuki Matsunaga, Tomohito Tanaka, Takahisa Yamamoto, Yuichi Ikuhara, First-principles calculations of intrinsic defects in Al 2 O 3 Physical Review B. ,vol. 68, pp. 085110- ,(2003) , 10.1103/PHYSREVB.68.085110
G. J. Dienes, D. O. Welch, C. R. Fischer, R. D. Hatcher, O. Lazareth, M. Samberg, Shell-model calculation of some point-defect properties in. cap alpha. --Al/sub 2/O/sub 3/ Physical Review B. ,vol. 11, pp. 3060- 3070 ,(1975) , 10.1103/PHYSREVB.11.3060
Timothy S. Bush, Julian D. Gale, C. Richard A. Catlow, Peter D. Battle, Self-consistent interatomic potentials for the simulation of binary and ternary oxides Journal of Materials Chemistry. ,vol. 4, pp. 831- 837 ,(1994) , 10.1039/JM9940400831
K.P.D. Lagerlöf, R.W. Grimes, The defect chemistry of sapphire (α-Al2O3) Acta Materialia. ,vol. 46, pp. 5689- 5700 ,(1998) , 10.1016/S1359-6454(98)00256-0
S. K. MOHAPATRA, F. A. KROGER, The Dominant Type of Atomic Disorder in α‐Al2O3 Journal of the American Ceramic Society. ,vol. 61, pp. 106- 109 ,(1978) , 10.1111/J.1151-2916.1978.TB09249.X
Adrian J Rowley, Mark Wilson, Paul A Madden, Crystal structure and surface relaxation in with a transferable oxide interaction potential Journal of Physics: Condensed Matter. ,vol. 11, pp. 1903- 1914 ,(1999) , 10.1088/0953-8984/11/8/004
Masanori Matsui, MOLECULAR DYNAMICS STUDY OF THE STRUCTURES AND BULK MODULI OF CRYSTALS IN THE SYSTEM CAO-MGO-AL2O3-SIO2 Physics and Chemistry of Minerals. ,vol. 23, pp. 345- 353 ,(1996) , 10.1007/BF00199500
B. G. Dick, A. W. Overhauser, Theory of the Dielectric Constants of Alkali Halide Crystals Physical Review. ,vol. 112, pp. 90- 103 ,(1958) , 10.1103/PHYSREV.112.90
K.J.W. Atkinson, Robin W. Grimes, Mark R. Levy, Zoe L. Coull, Tim English, Accommodation of impurities in α-Al2O3, α-Cr2O3 and α-Fe2O3 Journal of The European Ceramic Society. ,vol. 23, pp. 3059- 3070 ,(2003) , 10.1016/S0955-2219(03)00101-8