作者: Simon R. Blackburn , Mike Burmester , Yvo Desmedt , Peter R. Wild
关键词: Ideal (set theory) 、 Zero-knowledge proof 、 Cryptography 、 Multiplicative function 、 Homomorphic secret sharing 、 Mathematics 、 Secret sharing 、 Homomorphic encryption 、 Cryptosystem 、 Theoretical computer science
摘要: Multiplicative threshold schemes are useful tools in cryptography. For example, such can be used with a wide variety of practical homomorphic cryptosystems (such as the RSA, El Gamal and elliptic curve systems) for decryption, signatures, or proofs. The paper describes new recursive construction multiplicative which makes it possible to extend number users relatively small expansion share size. We discuss certain properties schemes, information rate zero knowledge aspects. The extends Karnin-Greene-Hellman bound on parameters ideal secret sharing not necessarily then uses this yardstick compare performance currently known schemes.