An algebraic framework for the design of nonlinear observers with unknown inputs

作者: Jean-Pierre Barbot , Michel Fliess , Thierry Floquet , None

DOI: 10.1109/CDC.2007.4434695

关键词: Algebraic numberDifferentiatorReal algebraic geometryControl theoryAlgebraic differential equationMathematicsNonlinear systemObservabilityDifferential algebraic geometryState variable

摘要: The observability properties of nonlinear systems with unknown inputs are characterized via differentially algebraic techniques. State variables and estimated thanks to a new numerical differentiator. It is shown through an academic example concrete case-study that the proposed scheme can be applied fail fulfill some usual structural assumptions.

参考文章(42)
Hebertt Sira-Ramirez, Sunil Kumar Agrawal, Differentially Flat Systems ,(2004)
A. Isidori, C. H. Moog, On the nonlinear equivalent of the notion of transmission zeros Springer, Berlin, Heidelberg. pp. 146- 158 ,(1988) , 10.1007/BFB0043181
Gilles Millérioux, Michel Fliess, Jamal Daafouz, Une approche intrinsèque des observateurs linéaires à entrées inconnues Conférence internationale francophone d'automatique (CIFA 2006). ,(2006)
E. D. Sontag, Alberto Isidori, B. W. Dickinson, M. Thoma, A. Fettweis, J. W. Modestino, J. L. Massey, Nonlinear Control Systems ,(1985)
M. HOU, R.J. PATTON, Input observability and input reconstruction Automatica. ,vol. 34, pp. 789- 794 ,(1998) , 10.1016/S0005-1098(98)00021-1
Michel Fliess, Automatique et corps différentiels Forum Mathematicum. ,vol. 1, pp. 227- 238 ,(1989) , 10.1515/FORM.1989.1.227
Michel Fliess, Analyse non standard du bruit Comptes Rendus Mathematique. ,vol. 342, pp. 797- 802 ,(2006) , 10.1016/J.CRMA.2006.02.037
Louis M. Pecora, Thomas L. Carroll, Synchronization in chaotic systems Physical Review Letters. ,vol. 64, pp. 821- 824 ,(1990) , 10.1103/PHYSREVLETT.64.821