Non-harmonic quaternion Fourier transform and uncertainty principle

作者: Ying Xiong Fu

DOI: 10.1080/10652469.2014.961010

关键词: Short-time Fourier transformFourier analysisQuaternionic representationMathematical analysisMathematicsFourier transformFractional Fourier transformHarmonic wavelet transformParseval's theoremFourier inversion theorem

摘要: … quaternionic Fourier transform (QFT) plays a vital role in the representation of signals and transforms a quaternionic 2 D signal into a quaternion… of non-harmonic quaternionic Fourier …

参考文章(23)
Jack B. Kuipers, Quaternions and Rotation Sequences ,(1998)
Charles K. Chui, An introduction to wavelets ,(1992)
J. B. Kuipers, Quaternions and rotation sequences : a primer with applications to orbits, aerospace, and virtual reality Quarternions and Rotation Sequences: A Primer with Applications to Orbits. ,(1999) , 10.1515/9780691211701
Guangbin Ren, Qiuhui Chen, Paula Cerejeiras, Uwe Kaehle, Chirp transforms and Chirp series Journal of Mathematical Analysis and Applications. ,vol. 373, pp. 356- 369 ,(2011) , 10.1016/J.JMAA.2010.07.037
Aytac Arikoglu, Ibrahim Ozkol, Solutions of integral and integro-differential equation systems by using differential transform method Computers & Mathematics with Applications. ,vol. 56, pp. 2411- 2417 ,(2008) , 10.1016/J.CAMWA.2008.05.017
Bahri Mawardi, Eckhard MS Hitzer, Clifford fourier transformation and uncertainty principle for the clifford geometric algebra Cl3,0 Advances in Applied Clifford Algebras. ,vol. 16, pp. 41- 61 ,(2006) , 10.1007/S00006-006-0003-X
Soo-Chang Pei, Jian-Jiun Ding, Ja-Han Chang, Efficient implementation of quaternion Fourier transform, convolution, and correlation by 2-D complex FFT IEEE Transactions on Signal Processing. ,vol. 49, pp. 2783- 2797 ,(2001) , 10.1109/78.960426
MAWARDI BAHRI, ECKHARD S. M. HITZER, CLIFFORD ALGEBRA Cl3,0-VALUED WAVELET TRANSFORMATION, CLIFFORD WAVELET UNCERTAINTY INEQUALITY AND CLIFFORD GABOR WAVELETS International Journal of Wavelets, Multiresolution and Information Processing. ,vol. 05, pp. 997- 1019 ,(2007) , 10.1142/S0219691307002166
QIUHUI CHEN, LUOQING LI, GUANGBIN REN, GENERALIZED PALEY–WIENER THEOREMS International Journal of Wavelets, Multiresolution and Information Processing. ,vol. 10, pp. 1250020- ,(2012) , 10.1142/S0219691312500208