SPLITTING THEOREMS IN PRESENCE OF AN IRROTATIONAL VECTOR FIELD

作者: Benjamin Olea , Manuel Gutierrez

DOI:

关键词: Complex lamellar vector fieldCurl (mathematics)Conservative vector fieldSolenoidal vector fieldVector potentialInvariant manifoldMathematicsFundamental vector fieldMathematical analysisCongruence (general relativity)

摘要: New splitting theorems in a semi-Riemannian manifold which ad- mits an irrotational vector field (not necessarily gradient) with some suitable properties are obtained. According to the extras hypothesis assumed on field, we can get twisted, warped or direct decompositions. Some appli- cations Lorentzian shown and also S 1 × L type decomposition is treated.

参考文章(21)
Miguel Sánchez, On the Geometry of Generalized Robertson± Walker Spacetimes: Geodesics General Relativity and Gravitation. ,vol. 30, pp. 915- 932 ,(1998) , 10.1023/A:1026664209847
Nobuhiro Innami, Splitting theorems of riemannian manifolds Compositio Mathematica. ,vol. 47, pp. 237- 247 ,(1982)
Gilbert Hector, Ulrich Hirsch Galdós, Introduction to the geometry of foliations F. Vieweg & Sohn. ,(1986)
Eduardo García-Río, Demir N. Kupeli, Some Splitting Theorems for Stably Causal Spacetimes General Relativity and Gravitation. ,vol. 30, pp. 35- 44 ,(1998) , 10.1023/A:1018816815433
H. Wu, On the de Rham decomposition theorem Illinois Journal of Mathematics. ,vol. 8, pp. 291- 311 ,(1964) , 10.1215/IJM/1256059674
Gerard Walschap, Spacelike metric foliations Journal of Geometry and Physics. ,vol. 32, pp. 97- 101 ,(1999) , 10.1016/S0393-0440(99)00021-2
Arthur E. Fischer, Riemannian submersions and the regular interval theorem of Morse theory Annals of Global Analysis and Geometry. ,vol. 14, pp. 263- 300 ,(1996) , 10.1007/BF00054474
Steven G. Harris, A characterization of Robertson-Walker spaces by null sectional curvature General Relativity and Gravitation. ,vol. 17, pp. 493- 498 ,(1985) , 10.1007/BF00761906