Application of foreground object patterns analysis for event detection in an innovative video surveillance system

作者: Dariusz Frejlichowski , Katarzyna Gościewska , Paweł Forczmański , Radosław Hofman

DOI: 10.1007/S10044-014-0405-7

关键词: Video content analysisObject (computer science)Mixture modelPattern recognition (psychology)Event (computing)Computer visionFocus (optics)Computer scienceEvent recognitionArtificial intelligenceModular design

摘要: SmartMonitor is an innovative surveillance system based on video content analysis. It a modular solution that can work in several predefined scenarios mainly concerned with home/surrounding protection against unauthorized intrusion, supervision over ill person and crime detection. Each scenario associated actions conditions, which imply the utilization of algorithms various input parameters. In this paper, focus put analysis foreground object patterns for purposes event recognition, as well experimental investigation selected methods were developed employed prototype. The prototype performs three main tasks: detection localization regions using adaptive background modelling Gaussian Mixture Models, candidate objects extraction classification Haar HOG descriptors, tracking Mean-Shift algorithm. goal described here to match parameters each provide highest effectiveness decrease number false alarms.

参考文章(20)
Dariusz Frejlichowski, Paweł Forczmański, Adam Nowosielski, Katarzyna Gościewska, Radosław Hofman, SmartMonitor: an approach to simple, intelligent and affordable visual surveillance system international conference on computer vision. pp. 726- 734 ,(2012) , 10.1007/978-3-642-33564-8_87
Dariusz Frejlichowski, Katarzyna Gościewska, Paweł Forczmański, Adam Nowosielski, Radosław Hofman, The Removal of False Detections from Foreground Regions Extracted Using Adaptive Background Modelling for a Visual Surveillance System international conference on information systems. pp. 253- 264 ,(2013) , 10.1007/978-3-642-40925-7_24
Dariusz Frejlichowski, Katarzyna Gościewska, Paweł Forczmański, Adam Nowosielski, Radosław Hofman, Extraction of the Foreground Regions by Means of the Adaptive Background Modelling Based on Various Colour Components for a Visual Surveillance System computer recognition systems. pp. 351- 360 ,(2013) , 10.1007/978-3-319-00969-8_34
Katarzyna Gościewska, Radosław Hofman, Paweł Forczmański, Adam Nowosielski, Dariusz Frejlichowski, SmartMonitor: recent progress in the development of an innovative visual surveillance system Applied Computer Science. ,vol. 6, pp. 28- 35 ,(2012)
Paweł Forczmański, Marcin Seweryn, Surveillance Video Stream Analysis Using Adaptive Background Model and Object Recognition Computer Vision and Graphics. pp. 114- 121 ,(2010) , 10.1007/978-3-642-15910-7_13
P. KaewTraKulPong, R. Bowden, An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection Proc. 2nd European Workshop on Advanced Video Based Surveillance Systems, 2001. pp. 135- 144 ,(2002) , 10.1007/978-1-4615-0913-4_11
Sen-ching S. Cheung, Chandrika Kamath, Robust techniques for background subtraction in urban traffic video visual communications and image processing. ,vol. 5308, pp. 881- 892 ,(2004) , 10.1117/12.526886
Alper Yilmaz, Omar Javed, Mubarak Shah, Object tracking: A survey ACM Computing Surveys. ,vol. 38, pp. 13- ,(2006) , 10.1145/1177352.1177355
Yizong Cheng, Mean shift, mode seeking, and clustering IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 17, pp. 790- 799 ,(1995) , 10.1109/34.400568
D. Comaniciu, P. Meer, Mean shift: a robust approach toward feature space analysis IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 24, pp. 603- 619 ,(2002) , 10.1109/34.1000236