作者: Ronald E. Bruck
DOI: 10.1007/BF02764907
关键词: Discrete mathematics 、 Banach space 、 Closed graph theorem 、 Uniform boundedness principle 、 Bounded inverse theorem 、 Banach–Mazur theorem 、 Mathematics 、 Pure mathematics 、 Eberlein–Šmulian theorem 、 Open mapping theorem (functional analysis) 、 Inverse function theorem
摘要: The following theorem is proven:if E a uniformly rotund Banach space with Frechet differentiable norm, C bounded nonempty closed convex subset of E, and T: C→C contraction, then the iterates {Tnx} are weakly almost-convergent to fixed-point T.