An Invitation to Compressive Sensing

作者: Simon Foucart , Holger Rauhut

DOI: 10.1007/978-0-8176-4948-7_1

关键词: Compressed sensingArchitectural engineeringSampling theoryComputer science

摘要: … This first chapter introduces the standard compressive sensing problem and gives an overview of the content of this book. Since the mathematical theory is highly motivated by real-life …

参考文章(152)
R. Berinde, A. C. Gilbert, P. Indyk, H. Karloff, M. J. Strauss, Combining geometry and combinatorics: A unified approach to sparse signal recovery allerton conference on communication, control, and computing. pp. 798- 805 ,(2008) , 10.1109/ALLERTON.2008.4797639
Massimo Fornasier, Karin Schnass, Jan Vybiral, Learning Functions of Few Arbitrary Linear Parameters in High Dimensions Foundations of Computational Mathematics. ,vol. 12, pp. 229- 262 ,(2012) , 10.1007/S10208-012-9115-Y
Yi-Kai Liu, Universal low-rank matrix recovery from Pauli measurements arXiv: Quantum Physics. ,(2011)
Mike E. Davies, Yonina C. Eldar, Rank Awareness in Joint Sparse Recovery IEEE Transactions on Information Theory. ,vol. 58, pp. 1135- 1146 ,(2012) , 10.1109/TIT.2011.2173722
Erich Novak, Henryk Woźniakowski, Tractability of Multivariate Problems European Mathematical Society Publishing House. ,(2012) , 10.4171/116
E. Mark Haacke, Robert W. Brown, Michael R. Thompson, Ramesh Venkatesan, Yu Chung N Cheng, Magnetic Resonance Imaging: Physical Principles and Sequence Design ,(1999)
E. Novak, Optimal Recovery and n-Widths for Convex Classes of Functions Journal of Approximation Theory. ,vol. 80, pp. 390- 408 ,(1995) , 10.1006/JATH.1995.1025
Anna Gilbert, Piotr Indyk, Sparse Recovery Using Sparse Matrices Proceedings of the IEEE. ,vol. 98, pp. 937- 947 ,(2010) , 10.1109/JPROC.2010.2045092
Joachim H.G. Ender, On compressive sensing applied to radar Signal Processing. ,vol. 90, pp. 1402- 1414 ,(2010) , 10.1016/J.SIGPRO.2009.11.009
A. C. Gilbert, M. J. Strauss, J. A. Tropp, R. Vershynin, One sketch for all Proceedings of the thirty-ninth annual ACM symposium on Theory of computing - STOC '07. pp. 237- 246 ,(2007) , 10.1145/1250790.1250824