Competing Risks Analysis of Correlated Failure Time Data

作者: Bingshu E. Chen , Joan L. Kramer , Mark H. Greene , Philip S. Rosenberg

DOI: 10.1111/J.1541-0420.2007.00868.X

关键词: Alternative hypothesisEconometricsType I and type II errorsMedicineStatistical hypothesis testingEstimatorCorrelationStatisticsCumulative incidenceBreast cancerStandard errorGeneral Biochemistry, Genetics and Molecular BiologyStatistics and ProbabilityGeneral Immunology and MicrobiologyApplied mathematicsGeneral Agricultural and Biological SciencesGeneral Medicine

摘要: We develop methods for competing risks analysis when individual event times are correlated within clusters. Clustering arises naturally in clinical genetic studies and other settings. a nonparametric estimator of cumulative incidence, obtain robust pointwise standard errors that account within-cluster correlation. modify the two-sample Gray Pepe-Mori tests data, propose simple test difference incidence at landmark time. In simulation studies, our estimators asymptotically unbiased, modified statistics control type I error. The power respective is differentially sensitive to degree correlation; optimal depends on alternative hypothesis interest For purposes illustration, we apply family-based prospective cohort study hereditary breast/ovarian cancer families. women with BRCA1 mutations, estimate breast presence mortality from ovarian cancer, accounting significant within-family

参考文章(21)
Eric W. Lee, L. J. Wei, David A. Amato, Sue Leurgans, Cox-Type Regression Analysis for Large Numbers of Small Groups of Correlated Failure Time Observations Survival Analysis: State of the Art. pp. 237- 247 ,(1992) , 10.1007/978-94-015-7983-4_14
Margaret Sullivan Pepe, Motomi Mori, Kaplan—meier, marginal or conditional probability curves in summarizing competing risks failure time data? Statistics in Medicine. ,vol. 12, pp. 737- 751 ,(1993) , 10.1002/SIM.4780120803
Jeffrey J. Gaynor, Eric J. Feuer, Claire C. Tan, Danny H. Wu, Claudia R. Little, David J. Straus, Bayard D. Clarkson, Murray F. Brennan, On the Use of Cause-Specific Failure and Conditional Failure Probabilities: Examples from Clinical Oncology Data Journal of the American Statistical Association. ,vol. 88, pp. 400- 409 ,(1993) , 10.1080/01621459.1993.10476289
Debashis Ghosh, D. Y. Lin, Nonparametric Analysis of Recurrent Events and Death Biometrics. ,vol. 56, pp. 554- 562 ,(2000) , 10.1111/J.0006-341X.2000.00554.X
C. F. Spiekerman, D. Y. Lin, Marginal Regression Models for Multivariate Failure Time Data Journal of the American Statistical Association. ,vol. 93, pp. 1164- 1175 ,(1998) , 10.1080/01621459.1998.10473777
R. L. Prentice, J. D. Kalbfleisch, A. V. Peterson, N. Flournoy, V. T. Farewell, N. E. Breslow, The analysis of failure times in the presence of competing risks. Biometrics. ,vol. 34, pp. 541- 554 ,(1978) , 10.2307/2530374
Robert J. Gray, A Class of $K$-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk Annals of Statistics. ,vol. 16, pp. 1141- 1154 ,(1988) , 10.1214/AOS/1176350951
M. L. Moeschberger, John P. Klein, Statistical methods for dependent competing risks Lifetime Data Analysis. ,vol. 1, pp. 195- 204 ,(1995) , 10.1007/BF00985770
Wayne Nelson, Theory and applications of hazard plotting for censored failure data Technometrics. ,vol. 42, pp. 12- 25 ,(2000) , 10.2307/1271428