Fast Multiplication in Finite Fields GF(2N)

作者: Joseph H. Silverman

DOI: 10.1007/3-540-48059-5_12

关键词: Discrete mathematicsEmbeddingNormal basisArithmeticRing (mathematics)MathematicsConvolutionMultiplicationDiscrete logarithmMultiplication algorithmFinite field

摘要: A method is described for performing computations in a finite field GF(2N) by embedding it larger ring Rp where the multiplication operation convolution product and squaring rearrangement of bits. Multiplication has complexity N +1, which approximately twice as efficient optimal normal basis (ONB) or Montgomery GF(2N), while same efficiency ONB. Inversion solution quadratic equations can also be performed at least fast previous methods.

参考文章(33)
Christopher Hooley, On Artin's conjecture. Crelle's Journal. ,vol. 225, pp. 209- 220 ,(1967)
Erik De Win, Antoon Bosselaers, Servaas Vandenberghe, Peter De Gersem, Joos Vandewalle, A Fast Software Implementation for Arithmetic Operations in GF(2n) international cryptology conference. pp. 65- 76 ,(1996) , 10.1007/BFB0034836
Lawrence C. Washington, Introduction to Cyclotomic Fields ,(1982)
Richard Schroeppel, Hilarie Orman, Sean O’Malley, Oliver Spatscheck, Fast Key Exchange with Elliptic Curve Systems international cryptology conference. pp. 43- 56 ,(1995) , 10.1007/3-540-44750-4_4
Daniel M. Gordon, Kevin S. McCurley, Massively Parallel Computation of Discrete Logarithms international cryptology conference. pp. 312- 323 ,(1992) , 10.1007/3-540-48071-4_22
Finite Fields: Theory, Applications and Algorithms American Mathematical Society. ,vol. 168, ,(1994) , 10.1090/CONM/168
Andrew Odlyzko, Discrete Logarithms: The Past and the Future public key cryptography. ,vol. 19, pp. 129- 145 ,(2000) , 10.1023/A:1008350005447
Greg Harper, Alfred Menezes, Scott Vanstone, Public-key cryptosystems with very small key lengths theory and application of cryptographic techniques. pp. 163- 173 ,(1992) , 10.1007/3-540-47555-9_14