Detection and Classification of DDoS Attacks Using Fuzzy Inference System

作者: T. Subbulakshmi , S. Mercy Shalinie , C. Suneel Reddy , A. Ramamoorthi

DOI: 10.1007/978-3-642-14478-3_25

关键词: Computer scienceFalse positive paradoxIntrusion detection systemDenial-of-service attackComputer securityTestbedData miningAlert fusionVolume (computing)Fuzzy inference systemServer

摘要: A DDoS attack saturates a network by overwhelming the resources with an immense volume of traffic that prevent normal users from accessing resources. When Intrusion Detection Systems are used, huge number alerts will be generated and these consist both False Positives True Positives. Due to traffic, there is possibility occurring more than which difficult for analyst classify original take remedial action. This paper focuses on development alert classification system related attacks. It consists five phases : Attack Generation, Alert Collection, Fusion, Generalization classification. In attacks in experimental testbed. snort IDS used generate testbed collected. repeated fused together form meta alerts. Alerts Generalization, indicating towards servers taken further analysis. Classification, using fuzzy inference classified as reduces difficulty eliminating false positives. tested

参考文章(10)
Dipankar Dasgupta, Jonatan Gomez, Evolving Fuzzy Classifiers for Intrusion Detection ,(2002)
Hervé Debar, Andreas Wespi, Aggregation and Correlation of Intrusion-Detection Alerts recent advances in intrusion detection. pp. 85- 103 ,(2001) , 10.1007/3-540-45474-8_6
John D. Howard, Thomas A Longstaff, A common language for computer security incidents United States. National Technical Information Service. ,(1998) , 10.2172/751004
Tadeusz Pietraszek, Using Adaptive Alert Classification to Reduce False Positives in Intrusion Detection recent advances in intrusion detection. pp. 102- 124 ,(2004) , 10.1007/978-3-540-30143-1_6
William W. Cohen, Fast Effective Rule Induction Machine Learning Proceedings 1995. pp. 115- 123 ,(1995) , 10.1016/B978-1-55860-377-6.50023-2
Tadeusz Pietraszek, Axel Tanner, Data mining and machine learning-Towards reducing false positives in intrusion detection Information Security Technical Report. ,vol. 10, pp. 169- 183 ,(2005) , 10.1016/J.ISTR.2005.07.001
Wenke Lee, Salvatore J. Stolfo, A framework for constructing features and models for intrusion detection systems ACM Transactions on Information and System Security. ,vol. 3, pp. 227- 261 ,(2000) , 10.1145/382912.382914
Guy Helmer, Johnny S.K. Wong, Vasant Honavar, Les Miller, Automated discovery of concise predictive rules for intrusion detection Journal of Systems and Software. ,vol. 60, pp. 165- 175 ,(2002) , 10.1016/S0164-1212(01)00088-7
C. Kruegel, W. Robertson, G. Vigna, Using Alert Verification to Identify Successful Intrusion Attempts Praxis Der Informationsverarbeitung Und Kommunikation. ,vol. 27, pp. 219- 227 ,(2004) , 10.1515/PIKO.2004.219
Adel Nadjaran Toosi, Mohsen Kahani, Reza Monsefi, Network intrusion detection based on neuro-fuzzy classification international conference on computing & informatics. pp. 1- 5 ,(2006) , 10.1109/ICOCI.2006.5276608