Measuring method for thermal conductivity of a pyrolysis layer

作者: Jin Guo , Haiming Huang , Qing Wang , Ye Tian , Yipu Zhao

DOI: 10.1016/J.POLYMDEGRADSTAB.2019.05.035

关键词: Thermal conductivityPyrolysisCharringSpace Shuttle thermal protection systemComposite materialMaterials scienceHypersonic speed

摘要: Abstract The thermo-physical parameters of the pyrolysis layer in charring material play a fundamental role design thermal protection system (TPS) hypersonic vehicles, but there is still lack measuring methods for including gases, carbon residue and resin. method conductivity presented by means iteration inversion temperature at points, experimental equipment designed manufactured. Furthermore, under different pressures obtained this method. results reveal that its nonlinear function temperature; meanwhile, pressure has major effect on conductivity. This study can figure out test problem layer, which helpful to optimization TPS.

参考文章(29)
Weijie Li, Haiming Huang, Ye Tian, Zhe Zhao, A nonlinear pyrolysis layer model for analyzing thermal behavior of charring ablator International Journal of Thermal Sciences. ,vol. 98, pp. 104- 112 ,(2015) , 10.1016/J.IJTHERMALSCI.2015.07.002
Gaetano La Delfa, Johannes Luinge, Arthur Geoff Gibson, Next Generation Composite Aircraft Fuselage Materials under Post-crash Fire Conditions 1st International Conference of Engineering Against Fracture. pp. 169- 181 ,(2009) , 10.1007/978-1-4020-9402-6_14
Won Chan Park, Arvind Atreya, Howard R. Baum, Determination of pyrolysis temperature for charring materials Proceedings of the Combustion Institute. ,vol. 32, pp. 2471- 2479 ,(2009) , 10.1016/J.PROCI.2008.06.060
Shu-yuan Zhao, Bo-ming Zhang, Shan-yi Du, Xiao-dong He, Inverse Identification of Thermal Properties of Fibrous Insulation from Transient Temperature Measurements International Journal of Thermophysics. ,vol. 30, pp. 2021- 2035 ,(2009) , 10.1007/S10765-009-0680-5
Tianbao Cheng, Weiguo Li, Wei Lu, Yushan Shi, None, Heat Transfer and Failure Mode Analyses of Ultrahigh-Temperature Ceramic Thermal Protection System of Hypersonic Vehicles Mathematical Problems in Engineering. ,vol. 2014, pp. 1- 11 ,(2014) , 10.1155/2014/412718
E.D. Larson, E.M. Sparrow, Performance comparisons among geometrically different pin-fin arrays situated in an oncoming longitudinal flow International Journal of Heat and Mass Transfer. ,vol. 25, pp. 723- 725 ,(1982) , 10.1016/0017-9310(82)90178-8
W.N. dos Santos, J.A. de Sousa, R. Gregorio, Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures Polymer Testing. ,vol. 32, pp. 987- 994 ,(2013) , 10.1016/J.POLYMERTESTING.2013.05.007
M. Muller, S. Bourbigot, S. Duquesne, R. Klein, G. Giannini, C. Lindsay, J. Vlassenbroeck, Investigation of the synergy in intumescent polyurethane by 3D computed tomography Polymer Degradation and Stability. ,vol. 98, pp. 1638- 1647 ,(2013) , 10.1016/J.POLYMDEGRADSTAB.2013.06.018
Weijie Li, Haiming Huang, Ye Tian, Zhe Zhao, Nonlinear analysis on thermal behavior of charring materials with surface ablation International Journal of Heat and Mass Transfer. ,vol. 84, pp. 245- 252 ,(2015) , 10.1016/J.IJHEATMASSTRANSFER.2015.01.004
Y.-K. Chen, Frank S. Milos, Ablation and Thermal Response Program for Spacecraft Heatshield Analysis Journal of Spacecraft and Rockets. ,vol. 36, pp. 475- 483 ,(1999) , 10.2514/2.3469