Phase Space Description of Localization in Disordered One-Dimensional Systems

作者: M. Wołoszyn , B.J. Spisak , A.Z. Maksymowicz

DOI: 10.12693/APHYSPOLA.110.523

关键词: Classical mechanicsAperiodic graphMomentumPhysicsPhase spaceSpace (mathematics)Fibonacci numberDistribution functionSchrödinger equationPosition (vector)

摘要: The degree of electronic localization in disordered one-dimensional systems is discussed. model simplified to a set Dirac δ-like functions used for the potential Schrodinger equation and calculations are carried out ground state. disorder topological character introduced by random shifts peaks. For comparison, we also discuss two aperiodic peaks: Thue–Morse Fibonacci sequences. localization, both momentum real space, analyzed different strengths sizes system. We calculate length, additionally express effects terms inverse participation function means Husimi quasi-classical distribution phase space electron (position, momentum) coordinate present influence generated sequences on energy spectrum.

参考文章(32)
P G Harper, Single Band Motion of Conduction Electrons in a Uniform Magnetic Field Proceedings of the Physical Society. Section A. ,vol. 68, pp. 874- 878 ,(1955) , 10.1088/0370-1298/68/10/304
F. Wegner, Inverse participation ratio in 2+ ε dimensions European Physical Journal B. ,vol. 36, pp. 209- 214 ,(1980) , 10.1007/BF01325284
M. Hillery, R.F. O'Connell, M.O. Scully, E.P. Wigner, Distribution functions in physics: Fundamentals Physics Reports. ,vol. 106, pp. 121- 167 ,(1984) , 10.1016/0370-1573(84)90160-1
R E Borland, One-dimensional Chains with Random Spacing between Atoms Proceedings of the Physical Society. ,vol. 77, pp. 705- 711 ,(1961) , 10.1088/0370-1328/77/3/319
N.F. Mott, Conduction in glasses containing transition metal ions Journal of Non-Crystalline Solids. ,vol. 1, pp. 1- 17 ,(1968) , 10.1016/0022-3093(68)90002-1
N.F. Mott, W.D. Twose, The theory of impurity conduction Advances in Physics. ,vol. 10, pp. 107- 163 ,(1961) , 10.1080/00018736100101271
G.-L. Ingold, A. Wobst, Ch. Aulbach, P. Hänggi, Delocalization and Heisenberg's uncertainty relation European Physical Journal B. ,vol. 30, pp. 175- 179 ,(2002) , 10.1140/EPJB/E2002-00372-9
F. AXEL, J. P. ALLOUCHE, M. KLEMAN, M. MENDES-FRANCE, J. PEYRIERE, VIBRATIONAL MODES IN A ONE DIMENSIONAL "QUASI-ALLOY" : THE MORSE CASE Le Journal De Physique Colloques. ,vol. 47, ,(1986) , 10.1051/JPHYSCOL:1986318