Multistrategy Learning for Robot Behaviours

作者: Claude Sammut , Tak Fai Yik

DOI: 10.1007/978-3-642-05177-7_23

关键词: Reinforcement learningRobotMachine learningPlannerHumanoid robotConstraint satisfaction problemRobot learningArtificial intelligenceDegrees of freedomLearning classifier systemComputer science

摘要: Pure reinforcement learning does not scale well to domains with many degrees of freedom and particularly continuous domains. In this paper, we introduce a hybrid method in which symbolic planner constructs an approximate solution control problem. Subsequently, numerical optimisation algorithm is used refine the qualitative plan into operational policy. The demonstrated on problem stable walking gait for bipedal robot. We use approach illustrate benefits multistrategy robot learning.

参考文章(34)
Min Sub Kim, William Uther, Automatic Gait Optimisation for Quadruped Robots ,(2003)
O. Hanagata, M. Fujita, S. Takamura, G. S. Hornby, T. Yamamoto, Autonomous evolution of gaits with the Sony Quadruped Robot genetic and evolutionary computation conference. pp. 1297- 1304 ,(1999)
Pat Langley, Dongkyu Choi, A unified cognitive architecture for physical agents national conference on artificial intelligence. pp. 1469- 1474 ,(2006)
Masaki Ogino, Koh Hosoda, Minoru Asada, Learning Energy-Efficient Walking with Ballistic Walking Adaptive Motion of Animals and Machines. pp. 155- 164 ,(2006) , 10.1007/4-431-31381-8_14
Thomas G. Dietterich, The MAXQ Method for Hierarchical Reinforcement Learning international conference on machine learning. pp. 118- 126 ,(1998)
Nils J. Nilsson, Scott Benson, Reacting, planning, and learning in an autonomous agent Machine intelligence. pp. 29- 62 ,(1996)
Claude Sammut, Bernhard Hengst, The Evolution of a Robot Soccer Team ISRR. pp. 517- 530 ,(2003) , 10.1007/3-540-36460-9_34
Lise Getoor, Ben Taskar, Introduction to statistical relational learning MIT Press. ,(2007)
Bernhard Hengst, Discovering Hierarchy in Reinforcement Learning with HEXQ international conference on machine learning. pp. 243- 250 ,(2002)