Stochastic lattice gas model describing the dynamics of the SIRS epidemic process

作者: David R. de Souza , Tânia Tomé

DOI: 10.1016/J.PHYSA.2009.10.039

关键词: PopulationLattice (order)Critical lineMonte Carlo methodBirth and death processMathematicsStochastic processRenormalization groupStatistical physicsDirected percolation

摘要: Abstract We study a stochastic process describing the onset of spreading dynamics an epidemic in population composed individuals three classes: susceptible (S), infected (I), and recovered (R). The is defined by local rules involves following cyclic process: S → I → R → S (SIRS). open S → I → R (SIR) studied as particular case SIRS process. analyzed at different levels description: lattice gas model birth death By means Monte Carlo simulations dynamical mean-field approximations we show that exhibit line critical points separating two phases: absorbing phase where completely full S active S, I R coexist, which may or not present cycles. line, corresponds to spreading, shown belong directed percolation universality class. considering analyze role noise stabilizing oscillations.

参考文章(31)
Crispin W. Gardiner, Handbook of Stochastic Methods Springer Series in Synergetics. ,(1983) , 10.1007/978-3-662-02377-8
Malte Henkel, Haye Hinrichsen, Sven Lübeck, Non-Equilibrium Phase Transitions: Volume 1: Absorbing Phase Transitions ,(2009)
Zoltan Racz, Nonequilibrium Phase Transitions arXiv: Statistical Mechanics. ,(2002)
KELLY C. DE CARVALHO, TÂNIA TOMÉ, Self-organized patterns of coexistence out of a predator-prey cellular automaton International Journal of Modern Physics C. ,vol. 17, pp. 1647- 1662 ,(2006) , 10.1142/S0129183106010005
Tânia Tomé, Everaldo Arashiro, The threshold of coexistence and critical behaviour of a predator?prey cellular automaton Journal of Physics A. ,vol. 40, pp. 887- 900 ,(2007) , 10.1088/1751-8113/40/5/002
R. Durrett, S. Levin, The Importance of Being Discrete (and Spatial) Theoretical Population Biology. ,vol. 46, pp. 363- 394 ,(1994) , 10.1006/TPBI.1994.1032
Robin E Snyder, Roger M Nisbet, Spatial structure and fluctuations in the contact process and related models. Bulletin of Mathematical Biology. ,vol. 62, pp. 959- 975 ,(2000) , 10.1006/BULM.2000.0191
M. J. Keeling, The effects of local spatial structure on epidemiological invasions. Proceedings of The Royal Society B: Biological Sciences. ,vol. 266, pp. 859- 867 ,(1999) , 10.1098/RSPB.1999.0716
Javier E. Satulovsky, Tânia Tomé, Stochastic lattice gas model for a predator-prey system Physical Review E. ,vol. 49, pp. 5073- 5079 ,(1994) , 10.1103/PHYSREVE.49.5073