Osteoblast/fibroblast coculture derived bioactive ECM with unique matrisome profile facilitates bone regeneration.

作者: Mei Li , Anqi Zhang , Jiajing Li , Jing Zhou , Yanan Zheng

DOI: 10.1016/J.BIOACTMAT.2020.06.017

关键词: Tissue engineeringIn vitroOsteoblastChemistryBone regenerationIn vivoFibroblastExtracellular matrixRegenerative medicineCell biology

摘要: Extracellular matrix (ECM) with mimetic tissue niches was attractive to facilitate regeneration in situ via recruitment of endogenous cells and stimulation self-healing process. However, how engineer the complicate specific ECM unique matrisome vitro a challenge ECM-based biomaterials engineering regenerative medicine. Here, we introduced coculture system bone niche guided by cell-cell communication. In cocultures, fibroblasts promoted osteogenic differentiation osteoblasts extracellular vesicles. The generated (MN-ECM) displayed appearance morphology biological components. advantages MN-ECM were demonstrated promotion multiple cellular behaviors (proliferation, adhesion mineralization) vivo. Moreover, proteomic analysis used clarify molecular mechanism MN-ECM, which revealed signature. present study provides novel strategy generate communication system, forwards development tissue-bioactive along deepening understanding regulated for engineering.

参考文章(59)
Matthias P. Lutolf, Franz E. Weber, Hugo G. Schmoekel, Jason C. Schense, Thomas Kohler, Ralph Müller, Jeffrey A. Hubbell, Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nature Biotechnology. ,vol. 21, pp. 513- 518 ,(2003) , 10.1038/NBT818
Joo-Hyeon Lee, Dong Ha Bhang, Alexander Beede, Tian Lian Huang, Barry R. Stripp, Kenneth D. Bloch, Amy J. Wagers, Yu-Hua Tseng, Sandra Ryeom, Carla F. Kim, Lung Stem Cell Differentiation in Mice Directed by Endothelial Cells via a BMP4-NFATc1-Thrombospondin-1 Axis Cell. ,vol. 156, pp. 440- 455 ,(2014) , 10.1016/J.CELL.2013.12.039
Jacek R Wiśniewski, Alexandre Zougman, Nagarjuna Nagaraj, Matthias Mann, Universal sample preparation method for proteome analysis Nature Methods. ,vol. 6, pp. 359- 362 ,(2009) , 10.1038/NMETH.1322
In Gul Kim, Mintai P. Hwang, Ping Du, Jaehoon Ko, Chul-won Ha, Sun Hee Do, Kwideok Park, Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing Biomaterials. ,vol. 50, pp. 75- 86 ,(2015) , 10.1016/J.BIOMATERIALS.2015.01.054
Marina C Prewitz, F Philipp Seib, Malte von Bonin, Jens Friedrichs, Aline Stißel, Christian Niehage, Katrin Müller, Konstantinos Anastassiadis, Claudia Waskow, Bernard Hoflack, Martin Bornhäuser, Carsten Werner, Tightly anchored tissue-mimetic matrices as instructive stem cell microenvironments. Nature Methods. ,vol. 10, pp. 788- 794 ,(2013) , 10.1038/NMETH.2523
Freda D. Miller, David R. Kaplan, Mobilizing endogenous stem cells for repair and regeneration: are we there yet? Cell Stem Cell. ,vol. 10, pp. 650- 652 ,(2012) , 10.1016/J.STEM.2012.05.004
Hans-Curt Flemming, Jost Wingender, The biofilm matrix Nature Reviews Microbiology. ,vol. 8, pp. 623- 633 ,(2010) , 10.1038/NRMICRO2415
L. A. Johnston, Competitive Interactions Between Cells: Death, Growth, and Geography Science. ,vol. 324, pp. 1679- 1682 ,(2009) , 10.1126/SCIENCE.1163862
Elsie S. Place, Nicholas D. Evans, Molly M. Stevens, Complexity in biomaterials for tissue engineering Nature Materials. ,vol. 8, pp. 457- 470 ,(2009) , 10.1038/NMAT2441
Ethan E. Mann, Daniel J. Wozniak, Pseudomonas biofilm matrix composition and niche biology. Fems Microbiology Reviews. ,vol. 36, pp. 893- 916 ,(2012) , 10.1111/J.1574-6976.2011.00322.X