Superlattice Patterns in Surface Waves

作者: A. Kudrolli , B. Pier , J.P. Gollub

DOI: 10.1016/S0167-2789(98)00115-8

关键词: Standing wavePhase diagramWavelengthSuperlatticeModulation (music)Symmetry (physics)PhysicsAmplitudeCondensed matter physicsSurface wave

摘要: We report novel superlattice wave patterns at the interface of a fluid layer driven vertically. These are described most naturally in terms two interacting hexagonal sublattices. Two frequency forcing very large aspect ratio is utilized this work. A pattern ("superlattice-I") consisting lattices oriented relative angle 22^o obtained with 6:7 frequencies. Several theoretical approaches that may be useful understanding have been proposed. In another example, waves fully by superimposed wavelength sqrt(3), 30^o. The time dependence "superlattice-II" unusual. instantaneous reveal time-periodic stripe modulation breaks 6-fold symmetry any instant, but stripes absent average. not simply amplitude modulations primary standing wave. transition from superlattice-II state to 12-fold quasi-crystalline observed changing phase Phase diagrams (including superlattices, quasicrystalline patterns, ordinary hexagons, and squares) as function amplitudes phases driving accelerations.

参考文章(16)
E. Pampaloni, S. Residori, S. Soria, F. T. Arecchi, Phase Locking in Nonlinear Optical Patterns Physical Review Letters. ,vol. 78, pp. 1042- 1045 ,(1997) , 10.1103/PHYSREVLETT.78.1042
Thomas Besson, W. Stuart Edwards, Laurette S. Tuckerman, Two-frequency parametric excitation of surface waves. Physical Review E. ,vol. 54, pp. 507- 513 ,(1996) , 10.1103/PHYSREVE.54.507
Bo Christiansen, Preben Alstro?m, Mogens T. Levinsen, Ordered capillary-wave states: Quasicrystals, hexagons, and radial waves Physical Review Letters. ,vol. 68, pp. 2157- 2160 ,(1992) , 10.1103/PHYSREVLETT.68.2157
John Bechhoefer, Laurent Daudet, Sebastien Manneville, Valerie Ego, Secondary Instabilities of Surface Waves on Viscous Fluids in the Faraday Instability EPL. ,vol. 32, pp. 313- 318 ,(1995) , 10.1209/0295-5075/32/4/005
S. T. Milner, Square patterns and secondary instabilities in driven capillary waves Journal of Fluid Mechanics. ,vol. 225, pp. 81- 100 ,(1991) , 10.1017/S0022112091001970
Krishna Kumar, Kapil M. S. Bajaj, Competing patterns in the Faraday experiment Physical Review E. ,vol. 52, pp. R4606- R4609 ,(1995) , 10.1103/PHYSREVE.52.R4606
WENBIN ZHANG, JORGE VIÑALS, Pattern formation in weakly damped parametric surface waves driven by two frequency components Journal of Fluid Mechanics. ,vol. 341, pp. 225- 244 ,(1997) , 10.1017/S0022112097005387
Hanns Walter Müller, Periodic triangular patterns in the Faraday experiment. Physical Review Letters. ,vol. 71, pp. 3287- 3290 ,(1993) , 10.1103/PHYSREVLETT.71.3287
M. C. Cross, P. C. Hohenberg, Pattern formation outside of equilibrium Reviews of Modern Physics. ,vol. 65, pp. 851- 1112 ,(1993) , 10.1103/REVMODPHYS.65.851
Benoit Dionne, Mary Silber, Anne C Skeldon, Stability results for steady, spatially periodic planforms Nonlinearity. ,vol. 10, pp. 321- 353 ,(1997) , 10.1088/0951-7715/10/2/002