Exploring the Predictive Power of News and Neural Machine Learning Models for Economic Forecasting.

作者: Sebastiano Manzan , Sergio Consoli , Luca Barbaglia

DOI:

关键词: Machine learningEconomic forecastingArtificial intelligencePredictive powerComputer science

摘要:

参考文章(21)
Mark E. Doms, , Norman Morin, Consumer Sentiment, the Economy, and the News Media Social Science Research Network. ,vol. 2004, pp. 1- 70 ,(2004) , 10.17016/FEDS.2004.51
Felix A. Gers, Douglas Eck, Jürgen Schmidhuber, Applying LSTM to Time Series Predictable through Time-Window Approaches Artificial Neural Networks — ICANN 2001. pp. 669- 676 ,(2001) , 10.1007/3-540-44668-0_93
Guoqiang Zhang, B. Eddy Patuwo, Michael Y. Hu, Forecasting with artificial neural networks: International Journal of Forecasting. ,vol. 14, pp. 35- 62 ,(1998) , 10.1016/S0169-2070(97)00044-7
Sepp Hochreiter, Jürgen Schmidhuber, Long short-term memory Neural Computation. ,vol. 9, pp. 1735- 1780 ,(1997) , 10.1162/NECO.1997.9.8.1735
Vivien Marx, Biology: The big challenges of big data Nature. ,vol. 498, pp. 255- 260 ,(2013) , 10.1038/498255A
Jeffrey Pennington, Richard Socher, Christopher Manning, Glove: Global Vectors for Word Representation empirical methods in natural language processing. pp. 1532- 1543 ,(2014) , 10.3115/V1/D14-1162
Ching-Yun Chang, Bin Ke, Zhiyang Teng, Yue Zhang, Zahn Bozanic, Measuring the Information Content of Financial News. international conference on computational linguistics. pp. 3216- 3225 ,(2016)
Matthew Gentzkow, Bryan Kelly, Matt Taddy, Text as Data Journal of Economic Literature. ,vol. 57, pp. 535- 574 ,(2019) , 10.1257/JEL.20181020
Guokun Lai, Wei-Cheng Chang, Yiming Yang, Hanxiao Liu, Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks international acm sigir conference on research and development in information retrieval. pp. 95- 104 ,(2018) , 10.1145/3209978.3210006
Yao Qin, Dongjin Song, Haifeng Chen, Wei Cheng, Guofei Jiang, Garrison W. Cottrell, A dual-stage attention-based recurrent neural network for time series prediction international joint conference on artificial intelligence. pp. 2627- 2633 ,(2017) , 10.24963/IJCAI.2017/366